Skip to main content

Chemistry, Biological Activities, and Uses of Ficus carica Latex

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Ficus carica L. (Moraceae), also known as the common fig, is the most relevant fig species. It is valued both as food and as medicine. Fig contains milky latex in all parenchymatous tissues, which consists of the cytoplasmic content of laticifers and is leaked in response to physical damage. In this book chapter, aspects of the chemical composition of latex from the common fig are reviewed, including proteins with enzymatic activity, fatty acids, amino acids, volatile and nonvolatile low molecular weight molecules (secondary metabolites), and rubber particles. Biological activity, ethnopharmacological uses, and commercial aspects of fig latex and enzymes with high economic value purified from F. carica latex are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GC-IT-MS:

Gas Chromatography-Ion Trap-Mass Spectrometry

HPLC-DAD:

High-Performance Liquid Chromatography-Diode Array Detector

HPLC-UV:

High-Performance Liquid Chromatography-Ultraviolet

HPLC-UV-MS/MS:

High-Performance Liquid Chromatography- Ultraviolet-Mass/Mass

HPLC-UV/Vis:

High-Performance Liquid Chromatography-Ultraviolet/Visible

HS-SPME/GC-IT-MS:

Headspace Solid-Phase Microextraction/Gas Chromatography-Ion Trap-Mass Spectrometry

TLC:

Thin Layer Chromatography

References

  1. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  2. Kim YS, Park SJ, Lee EJ et al (2008) Antibacterial compounds from rose bengal-sensitized photooxidation of β-Caryophyllene. J Food Sci 73:C540–C545

    Article  CAS  PubMed  Google Scholar 

  3. Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT (2019) Laticifers, latex, and their role in plant defense. Trends Plant Sci 24:553–567

    Article  CAS  PubMed  Google Scholar 

  4. Mohamed SA, Abdel-Aty AM, Hamed MB, El-Badry MO, Fahmy AS (2011) Ficus sycomorus latex: a thermostable peroxidase. Afr J Biotechnol 10:17532–17545

    Google Scholar 

  5. Kang H, Soo Kim Y, Chung GC (2000) Characterization of natural rubber biosynthesis in Ficus benghalensis. Plant Physiol Biochem 38:979–987

    Article  CAS  Google Scholar 

  6. Villard C, Larbat R, Munakata R, Hehn A (2019) Defence mechanisms of Ficus: pyramiding strategies to cope with pests and pathogens. Planta 249:617–633

    Article  CAS  PubMed  Google Scholar 

  7. Teixeira SP, Marinho CR, Leme FM (2020) Structural diversity and distribution of laticifers. Adv Bot Res 93:27–54

    Article  Google Scholar 

  8. Woodland DW (1997) Contemporary plant systematics, 2nd edn. Andrews University Press, Michigan

    Google Scholar 

  9. Barolo MI, Ruiz Mostacero N, López SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119–127

    Article  CAS  PubMed  Google Scholar 

  10. Salhi-Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M, Trifi M (2006) Genetic diversity of different Tunisian fig (Ficus carica L.) collections revealed by RAPD fingerprints. Hereditas 143:15–22

    Article  PubMed  Google Scholar 

  11. Lansky EP, Paavilainen HM, Pawlus AD, Newman RA (2008) Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents. J Ethnopharmacol 119:195–213

    Google Scholar 

  12. Marinho CR, Teixeira SP (2019) Novel reports of laticifers in Moraceae and Urticaceae: revisiting synapomorphies. Plant Syst Evol 305:13–31

    Article  CAS  Google Scholar 

  13. Rubnov S, Kashman Y, Rabinowitz R, Schlesinger M, Mechoulam R (2001) Suppressors of cancer cell proliferation from fig (Ficus carica) resin: isolation and structure elucidation. J Nat Prod 64:993–996

    Article  CAS  PubMed  Google Scholar 

  14. Paşayeva L, Özalp B, Fatullayev H (2020) Potential enzyme inhibitory properties of extracts and fractions from fruit latex of Ficus carica-based on inhibition of α-amylase and α-glucosidase. J Food Meas Charact 14:2819–2827

    Article  Google Scholar 

  15. Boyacıoğlu O, Kara B, Tecimen S et al (2021) Antiproliferative effect of Ficus carica latex on cancer cell lines is not solely linked to peroxidase-like activity of ficin. Eur J Integr Med 45:101348

    Article  Google Scholar 

  16. Kitajima S, Aoki W, Shibata D et al (2018) Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica). Planta 247:1423–1438

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira AP, Silva LR, Ferreres F et al (2010) Chemical assessment and in vitro antioxidant capacity of Ficus carica latex. J Agric Food Chem 58:3393–3398

    Article  CAS  PubMed  Google Scholar 

  18. Sakagami H, Sugimoto M, Kanda Y, Murakami Y, Amano O, Saitoh J, Kochi A (2018) Medicines changes in metabolic profiles of human oral cells by benzylidene ascorbates and eugenol. Medicine 5:116

    CAS  Google Scholar 

  19. Song P-S, Tapley KJ (1979) Photochemistry and photobiology of psoralens. Photochem Photobiol 29:1177–1197

    Article  CAS  PubMed  Google Scholar 

  20. Petruccelli R, Ieri F, Ciaccheri L, Bonetti A (2018) Polyphenolic profiling and chemometric analysis of leaves from Italian Ficus carica L. varieties. Polyphenol compounds in common fig. Eur J Hortic Sci 83:94–103

    Article  Google Scholar 

  21. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm Biol 52:1487–1503

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira AP, Silva LR, Andrade PB et al (2010) Further insight into the latex metabolite profile of Ficus carica. J Agric Food Chem 58:10855–10863

    Article  CAS  PubMed  Google Scholar 

  23. Jeong WS, Lachance PA (2001) Phytosterols and fatty acids in fig (Ficus carica var. Mission) fruit and tree components. J Food Sci 66:278–281

    Article  CAS  Google Scholar 

  24. Pande G, Akoh CC (2009) Organic acids, antioxidant capacity, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chem 120:1067–1075

    Article  Google Scholar 

  25. Ryan M, Mcinerney D, Owens D, Collins P, Johnson A, Tomkin GH (2000) Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. Q J Med 93:85–91

    Article  CAS  Google Scholar 

  26. Rees K, Takeda A, Martin N et al (2020) Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease: a Cochrane review. Glob Heart 15:56

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dewick P (2009) Medicinal natural products. A biosynthetic approach. Wiley, London

    Book  Google Scholar 

  28. Aref HL, Mosbah H, Louati H, Said K, Selmi B (2011) Partial characterization of a novel amylase activity isolated from Tunisian Ficus carica latex. Pharm Biol 49:1158–1166

    Article  CAS  PubMed  Google Scholar 

  29. Yamashita S, Takahashi S (2020) Molecular mechanisms of natural rubber biosynthesis. Annu Rev Biochem 89:821–851

    Article  CAS  PubMed  Google Scholar 

  30. Singh AP, Wi SG, Chung GC, Kim YS, Kang H (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54:985–992

    Article  CAS  PubMed  Google Scholar 

  31. Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  32. Cornish K, Siler DJ (1996) Characterization of cis-prenyl transferase activity localised in a buoyant fraction of rubber particles from Ficus elastica latex. Plant Physiol Biochem 34:377–384

    CAS  Google Scholar 

  33. Cherian S, Ryu SB, Cornish K (2019) Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol J 17:2041–2061

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim JS, Kim YO, Ryu HJ, Kwak YS, Lee JY, Kang H (2003) Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol 44:412–419

    Article  CAS  PubMed  Google Scholar 

  35. Men X, Wang F, Chen GQ, Zhang H-B, Xian M (2019) Biosynthesis of natural rubber: current state and perspectives. Int J Mol Sci 20:50

    Article  Google Scholar 

  36. Feijoo-Siota L, Villa TG (2011) Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol 4:1066–1088

    Article  CAS  Google Scholar 

  37. Zhai Y, Cui Y, Song M, Vainstein A, Chen S, Ma H (2021) Papain-like cysteine protease gene family in fig (Ficus carica L.): genome-wide analysis and expression patterns. Front Plant Sci 12:1–14

    Article  Google Scholar 

  38. Konno K, Hirayama H, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378

    Article  CAS  PubMed  Google Scholar 

  39. Azarkan M, Matagne A, Wattiez R, Bolle L, Vandenameele J, Baeyens-Volant D (2011) Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. Phytochemistry 72:1718–1731

    Article  CAS  PubMed  Google Scholar 

  40. https://www.brenda-enzymes.org/literature.php?e=3.4.22.3&r=733039

  41. Chemical Abstract Service. https://www.chemicalbook.com/ProdSupplierGWCB4261869_EN.htm

  42. Kramer DE, Whitaker JR (1964) Ficus enzymes. II. Properties of the proteolytic enzymes from the latex. J Biol Chem 239:2178–2183

    Google Scholar 

  43. Sgarbieri VC, Gupte SM, Kramer DE, Whitaker JR (1964) Ficus enzymes. I. Separation of the proteolytic enzymes of Ficus carica. J Biol Chem 239:2170–2177

    Google Scholar 

  44. Devaraj KB, Kumar PR, Prakash V (2008) Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J Agric Food Chem 56:11417–11423

    Article  CAS  PubMed  Google Scholar 

  45. Richter G, Schwarz HP, Dorner F, Turecek PL (2002) Activation and inactivation of human factor X by proteases derived from Ficus carica. British J Haematol 119:1042–1051

    Article  CAS  Google Scholar 

  46. Milošević J, Vrhovac L, Đurković F, Janković B, Malkov S, Lah J, Polović ND (2020) Isolation, identification, and stability of Ficin 1c isoform from fig latex. New J Chem 44:15716–15723

    Article  Google Scholar 

  47. Usai G, Mascagni F, Giordani T et al (2019) Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. Plant J 102:600–614

    Article  Google Scholar 

  48. Aider M (2021) Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Commun 2. 10.3168/jdsc.2020-.0073. https://doi.org/10.3168/jdsc.2020-0073

  49. https://www.sigmaaldrich.com/US/en

  50. https://www.thermofisher.com/home.html

  51. Hamed MB, El-Badry MO, Kandil EI, Borai IH, Fahmy AS (2020) A contradictory action of procoagulant ficin by a fibrinolytic serine protease from Egyptian Ficus carica latex. Biotechnol Rep 27:e00492

    Article  Google Scholar 

  52. Raskovic BG, Polovic ND (2016) Collegenase activity in fig latex could contribute to its efficacy in ethnomedicinal preparations. J Herb Med 6:73–78

    Article  Google Scholar 

  53. Raskovic B, Bozovic O, Prodanovic R, Niketic V, Polovic N (2014) Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex. J Biosci Bioeng 118:622–627

    Article  CAS  PubMed  Google Scholar 

  54. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    CAS  PubMed  Google Scholar 

  55. Goodman TT, Olive PL, Pun SH (2007) Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomedicine 2:265–274

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Aref HL, Gaaliche B, Fekih A, Mars M, Aouni M, Chaumon JP, Said K (2011) In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat Prod Res 25:310–319

    Article  Google Scholar 

  57. Aref HL, Gaaliche B, Ladhari A, Hammami M, Hammami SO (2018) Co-evolution of enzyme activities and latex in fig (Ficus carica L.) during fruit maturity process. South Afr J Bot 115:143–152

    Article  Google Scholar 

  58. Elsayed AM, Hegazy UM, Hegazy MGA, Abdel-Ghany SS, Salama WH, Salem AMH, Fahmy AS (2018) Purification and biochemical characterization of peroxidase isoenzymes from Ficus carica latex. Biocatal Agric Biotechnol 16:1–9

    Article  Google Scholar 

  59. Kang H, Kang M, Han K (2000) Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. Plant Physiol 123:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elsayed AM, Hegazy UM, Hegazy MGA, Abdel-Ghany SS, Salama WH, Salem AMH, Fahmy AS (2018) Decolorization of synthetic dyes by Ficus carica latex peroxidase isoenzymes. Biotechnol J Int 21:1–14

    Article  Google Scholar 

  61. Vatić S, Mirković N, Milošević JR, Jovčić B, Polović ND (2020) Broad range of substrate specificities in papain and fig latex enzymes preparations improve enumeration of Listeria monocytogenes. Int J Food Microbiol 334:108851

    Article  PubMed  Google Scholar 

  62. Altaf F, Wu S, Kasim V (2021) Role of fibrinolytic enzymes in anti-thrombosis therapy. Front Mol Biosci 8:1–17

    Article  Google Scholar 

  63. De Amorin A, Borba HR, Carauta JPP, Lopes D, Kaplan MAC (1999) Anthelmintic activity of the latex of Ficus species. J Ethnopharmacol 64:255–258

    Article  PubMed  Google Scholar 

  64. De Feo V, Aquino R, Menghini A, Ramundo E, Senatore F (1992) Traditional phytotherapy in the peninsula Sorrentina, Campania, Southern Italy. J Ethnopharmacol 36:113–125

    Article  PubMed  Google Scholar 

  65. Yeşilada E, Honda G, Sezik E et al (1995) Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. J Ethnopharmacol 46:133–152

    Article  PubMed  Google Scholar 

  66. Lokar LC, Poldini L (1988) Herbal remedies in the traditional medicine of the Venezia Giulia region (North East Italy). J Ethnopharmacol 22:231–279

    Article  CAS  PubMed  Google Scholar 

  67. Fujita T, Sezik E, Tabata M et al (1995) Traditional medicine in Turkey VII. Folk medicine in middle and West Black Sea regions. Econ Bot 49:406–422

    Article  Google Scholar 

  68. Sebastian MK, Bhandari MM (1984) Medico-ethno botany of mount Abu, Rajasthan, India. J Ethnopharmacol 12:223–230

    Article  CAS  PubMed  Google Scholar 

  69. Shahinuzzaman M, Yaakob Z, Anuar FH et al (2020) In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci Rep 10:10852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aref HL, Salah KBH, Chaumont JP, Fekih AW, Aouni M, Said K (2010) In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex). Pak J Pharm Sci 23:53–58

    PubMed  Google Scholar 

  71. Aref HL, Mars M, Fekih A, Aouni M, Said K (2012) Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharm Biol 50:407–412

    Article  Google Scholar 

  72. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25:5789

    Article  CAS  PubMed Central  Google Scholar 

  73. Oliveira AP, Valentão P, Pereira JA, Silva BM, Tavares F, Andrade PB (2009) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47:2841–2846

    Google Scholar 

  74. Hemmatzadeh F, Fatemi A, Amini F (2003) Therapeutic effects of fig tree latex on bovine papillomatosis. J Veterinary Med Ser B 50:473–476

    Article  CAS  Google Scholar 

  75. Ghanbari A, Le Gresley A, Naughton D, Kuhnert N, Sirbu D, Ashraf GH (2019) Biological activities of Ficus carica latex for potential therapeutics in human papillomavirus (HPV) related cervical cancers. Sci Rep 9:1–11

    Article  Google Scholar 

  76. Luna LE (1984) The concept of plants as teachers among four mestizo shamans of Iquitos, Northeastern Peru. J Ethnopharmacol 11:135–156

    Article  CAS  PubMed  Google Scholar 

  77. Luna LE (1984) The healing practices of a Peruvian shaman. J Ethnopharmacol 13:123–133

    Article  Google Scholar 

  78. Marin FA, Peres SPBA, Zuliani A (2002) Alergia látex-fruta. Rev Nutr 15:95–103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Universidad Nacional de Rosario (UNR, Grant 80020180300045UR). MVC and SNL are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Noelí López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castelli, M.V., López, S.N. (2022). Chemistry, Biological Activities, and Uses of Ficus carica Latex. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics