Skip to main content

Integration of Pulsed Electric Fields in the Biorefinery Concept to Extract Microalgae Components of Interest for Food Industry

  • Chapter
  • First Online:
Pulsed Electric Fields Technology for the Food Industry

Part of the book series: Food Engineering Series ((FSES))

  • 1134 Accesses

Abstract

The high cultivation costs for microalgae and the complex and costly downstream processing make the price per ton of raw materials from microalgae biomass, such as biofuel, uneconomic. To overcome this detriment, it is suggested to use the residual biomass for biofuel production after obtaining high- and middle-value products. Microalgae are an attractive food source, since they are rich in proteins, peptides, carbohydrates, lipids, and other essential nutrients with protective and detoxifying roles (vitamins, minerals, pigments). A major problem is that these valuable components cannot be accessed without prior and adequate cell disruption. This chapter discusses a new strategy to integrate PEF treatment into biorefinery concept by implementation of an incubation step which facilitates the release of intracellular components after PEF treatment. Based on the results obtained from the microalgae Chlorella vulgaris and the cyanobacteria Arthrospira platensis, the dependence of various influencing factors such as temperature, pH value, and biomass concentration on protein release during the incubation step is shown. Finally, the efficiency of this approach is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PEF:

Pulsed electric field

HPH:

High-pressure homogenization

HSH:

High shear homogenization

DW:

Dry weight

BDW:

Biomass dry weight

SUS:

Suspension

References

  • Akaberi S, Gusbeth C, Silve A, Senthil Senthilnathan D, Navarro-López E, Molina-Grima E, Müller G, Frey W (2019) Effect of pulsed electric field treatment on enzymatic hydrolysis of proteins of Scenedesmus almeriensis. Algal Res 43. https://doi.org/10.1016/j.algal.2019.101656

  • Akaberi S, Krust D, Müller G, Frey W, Gusbeth C (2020) Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post- pulsed electric field treatment. Bioresour Technol 306. https://doi.org/10.1016/j.biortech.2020.123099

  • Biorizon biotech, Catalogo Biorizon (2020), https://www.biorizon.es

  • Bundesministerium für Bildung und Forschung (BMBF) (2010) Nationale Forschungsstrategie BioÖkonomie 2030 Unser Weg zu einer bio-basierten Wirtschaft. DruckVogt, Berlin. http://www.bmbf.de

    Google Scholar 

  • Carullo D et al (2018) Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res Elsevier:60–69. https://doi.org/10.1016/j.algal.2018.01.017

  • Cherng J-Y, Shih M-F (2005) Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sci 77(9):980–990. https://doi.org/10.1016/j.lfs.2004.12.036

    Article  CAS  Google Scholar 

  • Coons J E, Kalb D M, Dale T, Marrone B (L 2014) Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Res 6:250–270

    Google Scholar 

  • Coustets M, Joubert-Durigneux V, Hérault J, Schoefs B, Blanckaert V, Garnier J-P, Teissié J (2014) Optimization of proteins electroextraction from microalgae by a flow process. Bioelectrochemistry 103:74–81. https://doi.org/10.1016/j.bioelechem.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  • Delrue F, Setier P-A, Sahut C, Cournac L, Roubaud A, Peltier G, Froment A-K (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440. https://doi.org/10.1007/s00253-008-1660-6

    Article  CAS  PubMed  Google Scholar 

  • Eing C, Goettel M, Straeßner R, Gusbeth C, Frey W (2013) Pulsed electric field treatment of microalgae-benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907

    Article  CAS  Google Scholar 

  • El Zakhem H et al (2006) Behavior of yeast cells in aqueous suspension affected by pulsed electric field. J Colloid Interface Sci 300:553–563

    Article  Google Scholar 

  • Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J (2014) Nutraceutical properties of phycocyanin. J Funct Foods 11:375–392

    Article  Google Scholar 

  • Goettel M, Eing C, Gusbeth C, Straeßner R, Frey W (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408

    Article  Google Scholar 

  • Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    Article  CAS  Google Scholar 

  • Guittet A, Poignard C, Gibou F (2017) A Voronoi Interface approach to cell aggregate electropermeabilization. J Comput Phys 332:143–159

    Article  Google Scholar 

  • Guo B, Yang B, Silve A, Akaberi S, Scherer D, Papachristou I, Frey W, Hornung U, Dahmen N (2019) Hydrothermal liquefaction of residual microalgae biomass after pulsed electric field-assisted valuables extraction. Algal Res 43. https://doi.org/10.1016/j.algal.2019.101650

  • Gusbeth C, Eing C, Göttel M, Frey M (2013) Boost of algae growth by ultrashort pulsed electric field treatment. IEEE Int Conf Plasma Scienc (ICOPS) SF, CA, 1-1

    Google Scholar 

  • IGV PLANTTECH Product Range and Services, Extraction and Cultivation, 2. Edition (2019) Issued August, https://www.igv-gmbh.com

  • International Energy Agency (IEA) (2009) Bioenergy Task 42 Biorefinery, https://www.iea-bioenergy.task42-biorefineries.com

  • Jaeschke DP, Mercali GD, Marczak LDF, Müller G, Frey W, Gusbeth C (2019) Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresour Technol 283:207–212

    Article  CAS  Google Scholar 

  • Kapoore R et al (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology:7. https://doi.org/10.3390/biology7010018

  • Kotnik T, Frey W, Sack M, Haberl Meglicˇ S, Peterka M, Miklavcˇicˇ D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–488

    Article  CAS  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Lee HS, Kim MK (2009) Effect of Chlorella vulgaris on glucose metabolism in Wistar rats fed high fat diet. J Med Food 5:1029–1037. https://doi.org/10.4162/nrp.2008.2.4.204

    Article  Google Scholar 

  • Li B, Gao M-H, Chu X-M, Teng L, Lv C-Y, Yang P, Yin Q-F (2015) The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol 749:107–114

    Article  CAS  Google Scholar 

  • Luengo E, Condón-Abanto S, Álvarez I et al (2014) Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 247:1269–1277. https://doi.org/10.1007/s00232-014-9688-2

    Article  CAS  PubMed  Google Scholar 

  • Martínez JM, Delso C, Aguilar D et al (2018a) Factors influencing autolysis of Saccharomyces cerevisiae cells induced by pulsed electric fields. Food Microbiol 73:67–72

    Article  Google Scholar 

  • Martínez JM, Delso C, Angulo J et al (2018b) Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innov Food Sci Emerg Technol 47:421–427

    Article  Google Scholar 

  • Memije-Lazaro IN, Blas-Valdivia V, Franco-Colín M, Cano-Europa E (2018) Arthrospira maxima (Spirulina) and C-phycocyanin prevent the progression of chronic kidney disease and its cardiovascular complications. J Funct Foods 43:37–43

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496. https://doi.org/10.1007/s00253-004-1779-z

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Morimura Y, Tamiya N (1953) Preliminary experiments in the use of chlorella as human food. Food Technol 8:179–182

    Google Scholar 

  • Morris HJ et al (2008) Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour Technol 99:7723–7729. https://doi.org/10.1016/j.biortech.2008.01.080

    Article  CAS  PubMed  Google Scholar 

  • Panahi Y, Darvishi B, Jowzi N, Nejat S, Sahebkar A (2015) Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties. Curr Pharm Des. https://doi.org/10.2174/1381612822666151112145226

  • Park K-H, Kim J-R, Choi I, Kim J-R, Cho K-H (2015) ω-6 (18:2) and ω-3 (18,3) fatty acids in reconstituted high-density lipoproteins show different functionality of anti-atherosclerotic properties and embryo toxicity. J Nutr Biochem 26:1613–1621

    Article  CAS  Google Scholar 

  • Pataro G, Goettel M, Straeßner R, Gusbeth C, Ferrari G, Frey W (2017) Effect of PEF Treatment on Extraction of Valuable Compounds from Microalgae C. Vulgaris. Chem Eng Transac 57:67–72

    Google Scholar 

  • Posten C, Walter C (eds) (2012) Microalgal biotechnology: potential and production. De Gruyter, Berlin, Boston

    Google Scholar 

  • Postma PR (2016) Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresour Technol 203:80–88. https://doi.org/10.1016/j.biortech.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  • Postma PR et al (2017) Energy efficient bead milling of microalgae: effect of bead size on disintegration and release of proteins and carbohydrates. Bioresour Technol 224:670–679. https://doi.org/10.1016/j.biortech.2016.11.071

    Article  CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Ganesan V, Carvalho IS (2015) Recent developments in therapeutic applications of cyanobacteria. Crit Rev Microbiol 1:1–12

    Google Scholar 

  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MH, Kleinegris DM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energ Environ Sci 9:3036–3043

    Article  Google Scholar 

  • Ryu NH et al (2014) Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: a double-blinded, randomized, placebo-controlled study. Nutr J 13:1–8

    Article  Google Scholar 

  • SABANA e-bulletine No.4, May (2019) Sustainable Algae Biorefinery for Agriculture and Aquaculture, SABANA project H2020-BG-2016-2017, https://www.eusabana.eu

  • Safaei M, Maleki H, Soleimanpour H, Norouzy A, Zahiri HS, Vali H, Noghabi KA (2019) Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci Rep 9:1–16

    CAS  Google Scholar 

  • Safi C et al (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol 25:523–529. https://doi.org/10.1007/s10811-012-9886-1

    Article  CAS  Google Scholar 

  • Safi C et al (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev 35:265–278. https://doi.org/10.1016/j.rser.2014.04.007

    Article  Google Scholar 

  • Safi C et al. (2017) Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana, Bioresource Technology. Elsevier Ltd, 239, pp. 204–210. https://doi.org/10.1016/j.biortech.2017.05.012

  • Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308

    Article  CAS  Google Scholar 

  • Scherer D, Krust D, Frey W, Mueller G, Nick P, Gusbeth C (2019) Pulsed electric field (PEF)-assisted protein recovery from Chlorella vulgaris is mediated by an enzymatic process after cell death. Algal Res 41:101536

    Article  Google Scholar 

  • Servaites JC, Faeth JL, Sidhu SS (2012) A dye binding method for measurement of total protein in microalgae. Anal Biochem 421:75–80. https://doi.org/10.1016/j.ab.2011.10.047

    Article  CAS  PubMed  Google Scholar 

  • Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726. https://doi.org/10.1007/s10811-010-9569-8

    Article  CAS  Google Scholar 

  • Silve A et al (2018a) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222. https://doi.org/10.1016/j.algal.2017.11.016

    Article  Google Scholar 

  • Silve A et al (2018b) Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy. Bioresour Technol 269:179–187. https://doi.org/10.1016/j.biortech.2018.08.060

    Article  CAS  PubMed  Google Scholar 

  • Simonis P et al (2017) Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields. Bioelectrochemistry 115:19–25

    Article  CAS  Google Scholar 

  • Soheili M, Khosravi-Darani K (2012) The potential health benefits of algae and micro algae in medicine: a review on Spirulina platensis. Curr Nutr Food Sci 7:279–285. https://doi.org/10.2174/157340111804586457

    Article  Google Scholar 

  • Straeßner R, Silve A, Eing C, Rocke S, Wuestner R, Leber K, Mueller G, Frey W (2016) Microalgae precipitation in treatment chambers during pulsed electric field (PEF) processing. Innov Food Sci Emerg Technol 37:391–399

    Article  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWF, Withag JAM, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122

    Article  CAS  Google Scholar 

  • Zocher K, Banaschik R, Schulze C, Schulz T, Kredl J, Miron C, Frey W, Kolb J (2016) Comparwison of extraction of valuable compounds from microalgae by atmospheric pressure plasmas awnd pulsed electric fields. Plasma Med 4:273–302. https://doi.org/10.1615/PlasmaMed.2017019104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Adrian Gusbeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gusbeth, C.A., Frey, W. (2022). Integration of Pulsed Electric Fields in the Biorefinery Concept to Extract Microalgae Components of Interest for Food Industry. In: Raso, J., Heinz, V., Alvarez, I., Toepfl, S. (eds) Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70586-2_12

Download citation

Publish with us

Policies and ethics