Skip to main content
Log in

Agroindustrial byproduct-based media in the production of microbial oil rich in oleic acid and carotenoids

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study focuses on the potential of Rhodotorula mucilaginosa CCT 7688 in simultaneous production of lipids and carotenoids in agroindustrial byproduct-based media and specially aims at establishing a process condition that guarantees high concentrations of both bioproducts, i.e., a carotenoid-rich microbial oil with potential economic value and health benefits attributed to carotenoids and fatty acids. Four different combinations of cultivation modes (batch and fed-batch) and alternative substrates (crude glycerol, sugarcane molasses and corn steep liquor) were tested. The M2-B assay, which comprises the use of an agroindustrial byproduct-based medium without any supplementation (70 g L−1 sugarcane molasses and 3.4 g L−1 corn steep liquor) and batch mode, was selected as the most promising one to produce both compounds. Total carotenoid production and total lipid content were 1794.2 µg L−1 and 43.2% (w/w), respectively, after 144 h of cultivation. The fatty acid profile showed predominance of oleic acid (69.9%) and palmitic acid (23.2%). Thus, R. mucilaginosa CCT 7688 may be used in simultaneous production of lipids and carotenoids successfully; its fatty acid profile is similar to that found in olive oil. Both compounds are economically interesting and have great possibility of future commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gong G, Liu L, Zhang X, Tan T (2019) Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription. Bioresour Technol 288:1–10. https://doi.org/10.1016/j.biortech.2019.121559

    Article  CAS  Google Scholar 

  2. Otero DM, Bulsing B, Huerta KM, Rosa CA, Zambiazi RC, Burkert CAV, Burkert JFM (2019) Carotenoid-producing yeasts in the Brazilian biodiversity: isolation, identification and cultivation in agroindustrial waste. Braz J Chem Eng 36:117–129. https://doi.org/10.1590/01046632.20190361s20170433

    Article  CAS  Google Scholar 

  3. Cipolatti EP, Remedi RD, Sá CS, Rodrigues AB, Ramos JMG, Burkert CAV, Furlong EB, Burkert JFM (2019) Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal Agric Biotechnol 20:1–9. https://doi.org/10.1016/j.bcab.2019.101208

    Article  Google Scholar 

  4. Misha B, Varjani S, Varma GKS (2019) Agro-industrial by-products in the synthesis of food grade microbial pigments: an eco-friendly alternative. In: Parameswaran B, Varjani S, Raveendran S (eds) Green Bio-processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_13

  5. Concepcion MR, Avalos J, Bonet ML, Boronat A, Gomez-gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93. https://doi.org/10.1016/j.plipres.2018.04.004

    Article  CAS  Google Scholar 

  6. Fiedor J, Burda K (2015) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488. https://doi.org/10.3390/nu6020466

    Article  CAS  Google Scholar 

  7. Wang MX, Jiao JH, Li ZY, Liu RR, Shi Q, Ma L (2013) Lutein supplementation reduces lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis 227:380–385

    Article  CAS  PubMed  Google Scholar 

  8. Market Data Forecast (2021) The global market for carotenoids. https://www.marketdataforecast.com/market-reports/global-carotenoids-market. Accessed 10 Apr 2021

  9. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenerg 68:135–150. https://doi.org/10.1016/j.biombioe.2014.06.016

    Article  CAS  Google Scholar 

  10. Kot AM, Błazejak S, Kieliszek M, Gientka I, Piwowarek K, Brzezinska R (2020) Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatal Agric Biotechnol 26:101634. https://doi.org/10.1016/j.bcab.2020.101634

    Article  Google Scholar 

  11. Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Anton Leeuw 80:215–224. https://doi.org/10.1023/A:1013083211405

    Article  CAS  Google Scholar 

  12. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and acid citric by Yarrowia lipolytica. Lipid Technol 21:83–87. https://doi.org/10.1002/lite.200900017

    Article  CAS  Google Scholar 

  13. Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R (2017) Microbial oil—a plausible alternate resource for food and fuel application. Bioresour Technol 233:423–432. https://doi.org/10.1016/j.biortech.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  14. Pereira RN, Silveira JM, Burkert JFM, Ores JC, Burkert CAV (2019) Simultaneous lipid and carotenoid production by stepwise fed-batch cultivation of Rhodotorula mucilaginosa with crude glycerol. Braz J Chem Eng 36:1099–1108. https://doi.org/10.1590/0104-6632.20190363s20190199

    Article  CAS  Google Scholar 

  15. Mesquita LMS, Neves BV, Pisani LP, Rosso VV (2020) Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. Food Sci Technol 122:109022. https://doi.org/10.1016/j.lwt.2020.109022

    Article  CAS  Google Scholar 

  16. Campo C, Assis RQ, Silva MM, Costa TMH, Paese K, Guterres SS, Rios AO (2019) Incorporation of zeaxanthin nanoparticles in yogurt: influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem 301:125230. https://doi.org/10.1016/j.foodchem.2019.125230

    Article  CAS  PubMed  Google Scholar 

  17. Papadaki A, Cipolatti EP, Aquieira ECG, Pinto MCC, Kopsahelis N, Freire DMG, Mandala I, Koutinas AA (2019) Development of microbial oil wax-based oleogel with potential application in food formulations. Food Bioprocess Technol 12:899–909. https://doi.org/10.1007/s11947-019-02257-3

    Article  CAS  Google Scholar 

  18. Borba CM, Tavares MN, Moraes CC, Burkert JFM (2018) Carotenoid production by Sporidiobolus pararoseus in agroindustrial medium: optimization of culture conditions in shake flasks and scale-up in a stirred tank fermenter. Braz J Chem Eng 35:509–520. https://doi.org/10.1590/0104-6632.20180352s20160545

    Article  CAS  Google Scholar 

  19. Kot AM, Błazejak S, Kurcz A, Brys J, Gientka I, Bzducha-wrobel A, Maliszewska M, Reczek L (2017) Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis yeast. Electron J Biotechn 27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.007

    Article  CAS  Google Scholar 

  20. Banzatto D, Freita LA, Mutton MJR (2013) Carotenoid production by Rhodotorula rubra cultivated in sugarcane juice, molasses, and syrup. Ciênc Tecnol Aliment 33:14–18. https://doi.org/10.1590/S0101-20612013000500003

    Article  Google Scholar 

  21. Cheng Y, Yang C (2016) Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Taiwan Inst Chem E 61:270–275. https://doi.org/10.1016/j.jtice.2015.12.027

    Article  CAS  Google Scholar 

  22. Silva J, Silva FLH, Ribeiro JES, Melo DJN, Santos FA, Medeiros LL (2020) Effect of supplementation, temperature and pH on carotenoids and lipids production by Rhodotorula mucilaginosa on sisal bagasse hydrolyzate. Biocatal Agric Biotechnol 30:101874. https://doi.org/10.1016/j.bcab.2020.101847

    Article  Google Scholar 

  23. Yen H, Hu C, Liang W (2019) A cost efficient way to obtain lipid accumulation in the oleaginous yeast Rhodotorula glutinis using supplemental waste cooking oils (WCO). J Taiwan Inst Chem Eng 97:80–87. https://doi.org/10.1016/j.jtice.2019.02.012

    Article  CAS  Google Scholar 

  24. Rodrigues TVDR, Damore T, Teixeira EC, Burkert JFM (2019) Carotenoid production by Rhodotorula mucilaginosa in batch and fed-batch fermentation using agroindustrial byproducts. Food Technol Biotechnol 57:388–398. https://doi.org/10.17113/ftb.57.03.19.6068

    Article  CAS  Google Scholar 

  25. Lopes NA, Remedi RD, Sá CS, Burkert CAV, Burkert JFM (2017) Different cell disruption methods for obtaining carotenoids by Sporodiobolus pararoseus and Rhodotorula mucilaginosa. Food Sci Biotechnol 26:759–766. https://doi.org/10.1007/s10068-017-0098-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silva CM, Borba TM, Burkert CAV, Burkert JFM (2012) Carotenoid production by Phaffia rhodozyma using raw glycerol as an additional carbon source. Int J Food Eng 8:18. https://doi.org/10.1515/1556-3758.2843

    Article  CAS  Google Scholar 

  27. Michelon M, Borba TM, Silva RR, Burkert CAV, Burkert JFM (2012) Extraction of carotenoids from Phaffia rhodozyma: a comparison between different techniques of cell disruption. Food Sci Biotechnol 21:1–8. https://doi.org/10.1007/s10068-012-0001-9

    Article  CAS  Google Scholar 

  28. Rios DAS, Borba TM, Kalil SJ, Burkert JFM (2015) Rice parboiling wastewater in the maximization of carotenoids bioproduction by Phaffia rhodozyma. Ciênc Agrotecnol 39:401–410. https://doi.org/10.1590/S1413-70542015000400011

    Article  Google Scholar 

  29. Moraes CC, Burkert JFM, Kalil SJ (2010) C-Phycocyanin extraction process for large-scale use. J Food Biochem 34:133–148. https://doi.org/10.1111/j.1745-4514.2009.00317.x

    Article  Google Scholar 

  30. Spier F (2014) Production of microbial lipids from raw glycerol generated in biodiesel synthesis Thesis (Ph.D in Food Engineering and Science). In: Federal University of Rio Grande (in Portuguese)

  31. Choi MH, Park YH (2003) Production of yeast biomass using waste Chinese cabbage. Biomass Bioenerg 25:221–226. https://doi.org/10.1016/S0961-9534(02)00194-0

    Article  Google Scholar 

  32. AOAC (2020) Official methods of analysis of AOAC international, 17th edition. 0935584676 Gaithersburg: J Assoc Off Anal Chem

  33. Fonseca R, Rafael RS, Kalil SJ, Burkert CAV, Burkert JFM (2011) Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. Afr J Biotechnol 10:1165–1171. https://doi.org/10.5897/AJB10.1034

    Article  Google Scholar 

  34. Cipolatti EP, Bulsing BA, Sá CS, Burkert CAV, Furlong EB, Burkert JFM (2015) Carotenoids from Phaffia rhodozyma: antioxidant activity and stability of extracts. Afr J Biotechnol 14:1982–1988. https://doi.org/10.5897/AJB2015.14682

    Article  Google Scholar 

  35. Machado WRC, Burkert JFM (2015) Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. Afr J Microbiol Res 9:209–219. https://doi.org/10.5897/AJMR2014.7096

    Article  CAS  Google Scholar 

  36. Davies BH (1976) Chemical biochemistry plant pigments. Academic Press, New York

    Google Scholar 

  37. Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total determination using Soxhlet, Roese-Goettlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J Food Compos Anal 14:93–100. https://doi.org/10.1006/jfca.2000.0972

    Article  CAS  Google Scholar 

  38. Spier F, Buffon JG, Burkert CAV (2015) Bioconversion of raw glycerol generated from the synthesis of biodiesel by different oleaginous yeasts: lipid content and fatty acid profile of biomass. Indian J Microbiol 55:415–422. https://doi.org/10.1007/s12088-015-0533-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hiss H (2001) Cinética de processos fermentativos. In: Schmidell W, Lima UA, Aquarone E, Borzani W (eds) Biotecnologia industrial: engenharia bioquímica. Edgar Blücher Ltda, São Paulo

  40. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas liquid chromatography. Anal Chem 38:514–515. https://doi.org/10.1021/ac60235a044

    Article  CAS  Google Scholar 

  41. Massarolo KC, Souza TD, Ribeiro AC, Furlong EB, Soares LAS (2016) Influence of cultivation Rhizopus oryzae on rice bran on lipid fraction: fatty acids and phospholipids. Biocatal Agric Biotechnol 8:204–208. https://doi.org/10.1016/j.bcab.2016.10.002

    Article  Google Scholar 

  42. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939. https://doi.org/10.1021/jf800602s

    Article  CAS  PubMed  Google Scholar 

  43. Kot AM, Blazejak S, Kieliszek M, Gientka I, Brys J (2019) Simultaneous production of lipids and carotenoids by red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Appl Biochem Biotechnol 189:598–607. https://doi.org/10.1007/s12010-019-03023-z

    Article  CAS  Google Scholar 

  44. Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, Jang HD (2013) A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel 105:711–717. https://doi.org/10.1016/j.fuel.2012.10.033

    Article  CAS  Google Scholar 

  45. Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol 157:214–222. https://doi.org/10.1016/j.biortech.2014.01.104

    Article  CAS  PubMed  Google Scholar 

  46. Valduga E, Tatsch PO, Tiggemann L, Treichel H, Toniazzo G, Zeni J, Di Luccio M, Furigo A (2009) Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Quim Nova 32:2429–2436. https://doi.org/10.1590/S0100-40422009000900036

    Article  CAS  Google Scholar 

  47. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J, Molina-Jouve C, Nicaud J (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 91:692–696. https://doi.org/10.1016/j.plipres.2009.08.005

    Article  CAS  Google Scholar 

  48. Vustin MM, Belykh EN, Kishilova SA (2004) Relationship between astaxanthin production and intensity of anabolic processes in the yeast Phaffia rhodozyma. Microbiology 73:751–757. https://doi.org/10.1007/s11021-005-0004-0

    Article  CAS  PubMed  Google Scholar 

  49. Braunwald T, Schwemmlein L, Graeff-Hönninger S, French WT, Herandez R, Holmes WE, Claupein W (2013) Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 97:6581–6588. https://doi.org/10.1007/s00253-013-5005-8

    Article  CAS  PubMed  Google Scholar 

  50. Alcaino J, Bravo N, Cordova P, Marcoleta AE, Contreras G, BArahona S, Sepulveda D, Lobato MF, Baeza M, Cifuentes V (2016) The involvement of Mig1 from Xanthophyllomyces dendrorhous in catabolic repression: an active mechanism contributing to the regulation of carotenoid production. PLoS ONE 1:e0162838. https://doi.org/10.1371/journal.pone.0162838

    Article  CAS  Google Scholar 

  51. Tang W, Wang Y, Zhang J, Cai Y, He Z (2019) Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol 29:507–517. https://doi.org/10.4014/jmb.1901.01022

    Article  CAS  PubMed  Google Scholar 

  52. Li C, Swofford CA, Sinskey AJ (2020) Modular engineering for microbial production of carotenoids. Metab Eng Commun 10:e00118. https://doi.org/10.1016/j.mec.2019.e00118

    Article  PubMed  Google Scholar 

  53. Otero, DM (2011) Bioprospecção de leveduras silvestres produtoras de carotenoides. Thesis (MSc in Food Engineering and Science). In: Federal University of Rio Grande

  54. Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66. https://doi.org/10.1016/j.preteyeres.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  55. Fei Q, Chang HN, Shang L, Choi J (2011) Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng 16:482–487. https://doi.org/10.1016/j.energy.2010.08.030

    Article  CAS  Google Scholar 

  56. USDA (United States Department of Agriculture) (2020) World agricultural production. Foreign agricultural service. https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed 15 Apr 2021

  57. USDA (United States Department of Agriculture) (2020) Sugar: world markets and trade. Foreign agricultural service. https://apps.fas.usda.gov/psdonline/circulars/sugar.pdf. Accessed 15 Apr 2021

  58. Romero FJ, Garcia LA, Salas JA, Diaz M, Quiros LM (2001) Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem 36:507–515. https://doi.org/10.1016/S0032-9592(00)00221-1

    Article  CAS  Google Scholar 

  59. Calvey CH, Su YK, Willis LB, McGee M, Jeffries TW (2016) Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol 200:780–788. https://doi.org/10.1016/j.biortech.2015.10.10

    Article  CAS  PubMed  Google Scholar 

  60. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815. https://doi.org/10.1016/j.biochi.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  61. Guerfali M, Ayadi I, Mohamed N, Ayadi W, Belghith H, Bronze MR, Ribeiro MHL, Gargouri A (2019) Triacylglycerols accumulation and glycolipids secretion by the oleaginous yeast Rhodotorula babjevae Y-SL7: structural identification and biotechnological applications. Bioresour Technol 273:326–334. https://doi.org/10.1016/j.biortech.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  62. Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agr Food Chem 62:2709–2727. https://doi.org/10.1021/jf4042134

    Article  CAS  Google Scholar 

  63. Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud J (2011) Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA: diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 93:1523–1537. https://doi.org/10.1007/s00253-011-3506-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40:392–397. https://doi.org/10.1023/B:ABIM.0000033917.57177.f2

    Article  CAS  Google Scholar 

  65. Maza DD, Vinarta SC, Su Y, Guilamon JM, Aybar MJ (2020) Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol 310:21–31. https://doi.org/10.1016/j.jbiotec.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  66. Rodrigues JF, Resende LM, Silva LFO, Pedroso MP, Pinheiro ACM, Nunes CA (2019) Quality of olive oils from southeastern Brazil. Bragantina 78:470–480. https://doi.org/10.1590/1678-4499.20180294

    Article  CAS  Google Scholar 

  67. Foscolou A, Critselis E, Panagiotakos D (2018) Olive oil consumption and human health: a narrative review. Maturitas 118:60–66. https://doi.org/10.1016/j.maturitas.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  68. Sales-Campos H, Souza PR, Peghini BC, Silva JS, Cardoso CR (2013) An overview of the modulatory effects of oleic acid in health and disease. Med Chem 13:201–210. https://doi.org/10.2174/1389557511313020003

    Article  CAS  Google Scholar 

  69. Alberio C, Izquierdo NG, Galella T, Zuil S, Reid R, Zambelli A, Aguirrezábal LAN (2015) A new sunflower high oleic mutation confers stable oil grain fatty acid composition across environments. Eur J Agron 73:25–33. https://doi.org/10.1016/j.eja.2015.10.003

    Article  CAS  Google Scholar 

  70. Grunvald AK, Carvalho CGP, Leite RS, Mandarino JMG, Andrade CAB, Amabile RF, Godinho VPC (2012) Influence of temperature on the fatty acid composition of the oil from sunflower genotypes grown in tropical regions. J Am Oil Chem Soc 90:545–553. https://doi.org/10.1007/s11746-012-2188-6

    Article  CAS  Google Scholar 

  71. Folayan AJ, Anawe PA, Aladejare AE, Ayeni AO (2019) Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Rep 5:793–806. https://doi.org/10.1016/j.egyr.2019.06.013

    Article  Google Scholar 

  72. Ramírez JRM, Martinez VA, Rocha OLF, Chui JFV, Cardenas MEC, Lopez DNM (2015) Colorantes y pigmentos microbianos em la beleza cosmética. Revista digital universitária. http://www.revista.unam.mx/vol.16/num4/art32/index.html. Accessed 12 Dec

  73. Ruiz MA, Arias JL, Gallardo V (2010) Skin creams made with olive oil. In: Preedy V, Watson R (eds) Olives and olive oil in health and disease prevention. Academic Press, Cambridge. https://doi.org/10.1016/b978-0-12-374420-3.00124-8

  74. Costa WA, Padilha CEA, Oliveira Júnior SD, Silva FLH, Silva J, Ancântara MA, Ferrari M, Santos ES (2020) Oil-lipids, carotenoids and fatty acids simultaneous production by Rhodotorula mucilaginosa CCT3892 using sugarcane molasses as carbon source. Braz J Food Technol 23:2019064. https://doi.org/10.1590/1981-6723.06419

    Article  CAS  Google Scholar 

  75. Jaswir I, Noviendri D, Hasrini RF, Octavianti F (2011) Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Med Plant Res 5:33. https://doi.org/10.5897/jmprx11.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for FAPERGS (Foundation Research Support in the State of Rio Grande do Sul), CNPq (National Council of Science and Technological Development). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tábita Veiga Dias Rodrigues.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, T.V.D., Teixeira, E.C., Macedo, L.P. et al. Agroindustrial byproduct-based media in the production of microbial oil rich in oleic acid and carotenoids. Bioprocess Biosyst Eng 45, 721–732 (2022). https://doi.org/10.1007/s00449-022-02692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02692-1

Keywords

Navigation