Skip to main content

Antimalarial Natural Products

  • Chapter
  • First Online:
Antimalarial Natural Products

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 117))

  • The original version of this chapter was revised (an incorrect series of formulas in the formula scheme on Page 70 has been updated with the correct formula). The correction to this chapter can be found at https://doi.org/10.1007/978-3-030-89873-1_2

Abstract

Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine’s biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine’s structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature’s combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 January 2022

    The original version of the book was inadvertently published with an incorrect series of formulas (197-199) in the formula scheme on Page 70 of Chapter 1, which has now been replaced with the correct formula (202). The erratum chapter has been updated with the changes and the correct presentation is given here

Notes

  1. 1.

    Note added in proof: The authors recently became aware of the article, Anft B (1955) “Friedlieb Ferdinand Runge: a forgotten chemist of the nineteenth century”, J Chem Ed 32:566 stating that Runge reported the isolation of quinine, which he called “China base”, in 1819, a year before the French team.

References

  1. Arrow KJ, Panosian C, Gelband H (2004) A brief history of malaria. In: Arrow KJ, Panosian C, Gelband H (eds) Saving lives, buying time. Economics of malaria drugs in an age of resistance. National Academies Press, Washington, DC, p 125

    Google Scholar 

  2. Cunha CB, Cunha BA (2008) Brief history of the clinical diagnosis of malaria: from Hippocrates to Osler. J Vector Borne Dis 45:194

    PubMed  Google Scholar 

  3. Jones WHS (1907) Malaria: a neglected factor in Greek history. With an introduction by Maj R Ross, FRS, CB and a concluding chapter by Ellett GG. Macmillan and Bowes, Cambridge, UK

    Google Scholar 

  4. Baron C, Hamlin C (2015) Malaria and the decline of ancient Greece: revisiting the Jones hypothesis in an era of interdisciplinarity. Minerva 53:327

    Article  Google Scholar 

  5. Marciniak S, Prowse TL, Herring DA, Klunk J, Kuch M, Duggan AT, Bondioli L, Holmes EC, Poinar HN (2016) Plasmodium falciparum malaria in 1st–2nd century CE southern Italy. Curr Biol 26:R1220

    Article  CAS  PubMed  Google Scholar 

  6. Anonymous (2005) Diseases and causes of death among the Popes. Acta Theol Suppl 7:233

    Google Scholar 

  7. Bruce-Chwatt LJ (1977) John Macculloch, MD, FRS (1773–1835) (The precursor of the discipline of malariology). Med Hist 21:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gowland RL, Western AG (2012) Morbidity in the marshes: using spatial epidemiology to investigate skeletal evidence for malaria in Anglo-Saxon England (AD 410–1050). Am J Phys Anthropol 147:301

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn KG, Campbell-Lendrum DH, Armstrong B Davies CR (2003) Malaria in Britain: past, present, and future. Proc Nat Acad Sci USA 100:9997

    Google Scholar 

  10. Mann CC (2011) 1493: Uncovering the New World Columbus created. Knopf, New York, p 560

    Google Scholar 

  11. Cox FEG (2010) History of the discovery of the malaria parasites and their vectors. Parasites Vectors 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCullough D (1977) The path between the seas: the creation of the Panama Canal, 1870–1914. Simon and Schuster, New York, p 698

    Google Scholar 

  13. Anonymous (2020) World malaria report 2020: 20 years of global progress and challenges. World Health Organization, Geneva, p 299

    Google Scholar 

  14. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, Stenlund H, Martens P Lloyd SJ (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA 111:3286

    Google Scholar 

  15. Normile D (2021) It’s official: China has eliminated malaria. Science. https://www.sciencemag.org/news/2021/06/it-s-official-china-has-eliminated-malaria

  16. Constantinou K (1998) Anopheles (malaria) eradication in Cyprus. Parassitologia 40:131

    CAS  PubMed  Google Scholar 

  17. Simac JN, Badar S, Farber JA, Brako MYO, Giudice-Jimenez RAL, Raspa SS, Achore M, MacKnight SD (2017) Malaria elimination in Sri Lanka. J Health Specialties 5:60

    Article  Google Scholar 

  18. Anonymous (2021). WHO recommends groundbreaking malaria vaccine for children at risk https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk. Accessed 28 October 2021

  19. Hsu E (2006) The history of Qing hao in the Chinese materia medica. Trans R Soc Trop Med Hyg 100:505

    Article  CAS  PubMed  Google Scholar 

  20. Tu Y (2016) Artemisinin—a gift from traditional Chinese medicine to the world (Nobel lecture). Angew Chem Int Ed 55:10210

    Article  CAS  Google Scholar 

  21. Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, Dolecek C, Hien TT, do Rosario VE, Arez AP, Pinto J, Michon P, Escalante AA, Nosten F, Burke M, Lee R, Blaze M, Otto TD, Barnwell JW, Pain A, Williams J, White NJ, Day NP, Snounou G, Lockhart PJ, Chiodini PL, Imwong M, Polley SD (2010) Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis 201:1544

    Google Scholar 

  22. Cox FE (2010) History of the discovery of the malaria parasites and their vectors. Parasit Vectors 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adams JH, Mueller I (2017) The biology of Plasmodium vivax. Cold Spring Harb Perspect Med 7:a025585

    Google Scholar 

  24. Collins WE, Jeffery GM (2007) Plasmodium malariae: parasite and disease. Clin Microbiol Rev 20:579

    Article  PubMed  PubMed Central  Google Scholar 

  25. Collins WE (2012) Plasmodium knowlesi: a malaria parasite of monkeys and humans. Annu Rev Entomol 57:107

    Article  CAS  PubMed  Google Scholar 

  26. Sutherland CJ (2016) Persistent parasitism: the adaptive biology of malariae and ovale malaria. Trends Parasitol 32:808

    Article  PubMed  Google Scholar 

  27. Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167:610

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava A, Creek DJ, Evans KJ, De Souza D, Schofield L, Muller S, Barrett MP, McConville MJ, Waters AP (2015) Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites. PLoS Pathog 11:e1004882

    Google Scholar 

  29. White NJ (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10:297

    Article  PubMed  PubMed Central  Google Scholar 

  30. Richter J, Franken G, Holtfreter MC, Walter S, Labisch A, Mehlhorn H (2016) Clinical implications of a gradual dormancy concept in malaria. Parasitol Res 115:2139

    Article  PubMed  Google Scholar 

  31. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673

    Article  CAS  PubMed  Google Scholar 

  32. Lee W-C, Russell B, Rénia L (2019) Sticking for a cause: the falciparum malaria parasites cytoadherence paradigm. Front Immunol 10:1444

    Google Scholar 

  33. Josling GA, Williamson KC, Llinás M (2018) Regulation of sexual commitment and gametocytogenesis in malaria parasites. Ann Rev Microbiol 72:501

    Google Scholar 

  34. Josling GA, Llinás M (2019) Commitment isn’t for everyone. Trends Parasitol 35:381

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A (2019) Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nature Microbiol 4:144

    Article  CAS  Google Scholar 

  36. Venugopal K, Hentzschel F, Valkiūnas G, Marti M (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Rev Microbiol 18:177

    Article  CAS  Google Scholar 

  37. De Niz M, Meibalan E, Mejia P, Ma S, Brancucci NMB, Agop-Nersesian C, Mandt R, Ngotho P, Hughes KR, Waters AP, Huttenhower C, Mitchell JR, Martinelli R, Frischknecht F, Seydel KB, Taylor T, Milner D, Heussler VT, Marti M (2018) Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Science Adv 4:eaat3775

    Google Scholar 

  38. Nilsson SK, Childs LM, Buckee C, Marti M (2015) Targeting human transmission biology for malaria elimination. PLoS Pathog 11:e1004871

    Google Scholar 

  39. Laurens MB (2018) The promise of a malaria vaccine—are we closer? Ann Rev Microbiol 72:273

    Article  CAS  Google Scholar 

  40. Bennink S, Kiesow MJ, Pradel G (2016) The development of malaria parasites in the mosquito midgut. Cell Microbiol 18:905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE Morris HR (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392:289

    Google Scholar 

  42. Sinden RE (1983) Sexual development of malarial parasites. In: Baker JR, Muller R (eds) Advances in parasitology, vol 22. Academic Press, London, New York, p 153

    Google Scholar 

  43. Sinden RE, Butcher GA, Billker O Fleck SL (1996) Regulation of infectivity of Plasmodium to the mosquito vector. In: Baker JR, Muller R, Rollinson D (eds) Advances in parasitology, vol 38. Academic Press, London, New York, p 53

    Google Scholar 

  44. Hayton K, Templeton TJ (2008) Osmiophilic bodies and the odd organelles of alveolates. Mol Microbiol 67:236

    Article  CAS  PubMed  Google Scholar 

  45. Paul REL, Brey PT, Robert V (2002) Plasmodium sex determination and transmission to mosquitoes. Trends Parasitol 18:32

    Article  PubMed  Google Scholar 

  46. Sinden RE, Carter R, Drakeley C, Leroy D (2012) The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malaria J 11:70

    Article  Google Scholar 

  47. Beier JC (1998) Malaria parasite development in mosquitoes. Ann Rev Entomol 43:519

    Article  CAS  Google Scholar 

  48. Lang-Unnasch N, Murphy AD (1998) Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Ann Rev Microbiol 52:561

    Article  CAS  Google Scholar 

  49. Ramasamy MS, Kulasekera R, Srikrishnaraj KA, Ramasamy R (1996) Different effects of modulation of mosquito (Diptera:Culicidae) trypsin activity on the infectivity of two human malaria (Hemosporidia:Plasmodidae) parasites. J Med Entomol 33:777

    Article  CAS  PubMed  Google Scholar 

  50. Meis JFGM, Pool G, Gemert GJ, Lensen AHW, Ponnudurai T, Meuwissen JHET (1989) Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res 76:13

    Article  CAS  PubMed  Google Scholar 

  51. Greenwood D (1992) The quinine connection. J Antimicrob Chemother 30:417

    Article  CAS  PubMed  Google Scholar 

  52. Guerra F (1977) The introduction of Cinchona in the treatment of malaria. Part I. J Trop Med Hyg 80:112

    CAS  Google Scholar 

  53. Guerra F (1977) The introduction of Cinchona in the treatment of malaria. Pt. II. J Trop Med Hyg 80:135

    CAS  Google Scholar 

  54. Le Couteur P, Burreson J (2004) Napoleon’s buttons: 17 molecules that changed history. Tarcher/Penguin, New York, p 375

    Google Scholar 

  55. Gannon M (2015) What really killed notorious English leader Oliver Cromwell? https://www.livescience.com/52569-oliver-cromwell-death-typhoid-fever.html. Accessed 14 Oct 2019

  56. Kaufman TS, Ruveda EA (2005) The quest for quinine: those who won the battles and those who won the war. Angew Chem Int Ed Engl 44:854

    Article  CAS  PubMed  Google Scholar 

  57. Cova TFGG, Pais AACC, Seixas de Melo JS (2017) Reconstructing the historical synthesis of mauveine from Perkin and Caro: procedure and details. Sci Rep 7:6806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bozic B, Uzelac TV, Kezic A Bajcetic M (2018) The role of quinidine in the pharmacological therapy of ventricular arrhythmias ‘quinidine’. Mini Rev Med Chem 18:468

    Google Scholar 

  59. Yang F, Hanon S, Lam P, Schweitzer P (2009) Quinidine revisited. Am J Med 122:317

    Article  CAS  PubMed  Google Scholar 

  60. Leete E (1960) Biosynthesis of quinine and related alkaloids. Acc Chem Res 2:59

    Article  Google Scholar 

  61. Battersby AR, Hall ES (1970) Biosynthesis of quinine from loganin. J Chem Soc D:194

    Google Scholar 

  62. Battersby AR, Parry RJ (1971) Biosynthesis of the Cinchona alkaloids: late stages of the pathway. J Chem Soc D:31

    Google Scholar 

  63. Battersby AR Parry RJ (1971) Biosynthesis of the Cinchona alkaloids: middle stages of the pathway. J Chem Soc D:30

    Google Scholar 

  64. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532

    Article  CAS  PubMed  Google Scholar 

  65. Stevens LH, Giroud C, Pennings EJM, Verpoorte R (1993) Purification and chacterization of strictosidine synthase from a suspension culture of Cinchona robusta. Phytochemistry 33:99

    Article  CAS  Google Scholar 

  66. Trenti F, Yamamoto K, Hong B, Paetz C, Nakamura Y, O’Connor SE (2021) Early and late steps of quinine biosynthesis. Org Lett 23:1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Villiers KA, Gildenhuys J, le Roex T (2012) Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine. ACS Chem Biol 7:666

    Article  PubMed  CAS  Google Scholar 

  68. Alumasa JN, Gorka AP, Casabianca LB, Comstock E, de Dios AC, Roepe PD (2011) The hydroxyl functionality and a rigid proximal N are required for forming a novel non-covalent quinine-heme complex. J Inorg Biochem 105:467

    Article  CAS  PubMed  Google Scholar 

  69. Olafson KN, Nguyen TQ, Rimer JD, Vekilov PG (2017) Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proc Natl Acad Sci USA 114:7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. White NJ (1998) Drug resistance in malaria. Brit Med Bull 54:703

    Article  CAS  PubMed  Google Scholar 

  71. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria J 10:144

    Article  CAS  Google Scholar 

  72. Le Bras J, Durand R (2003) The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fund Clin Pharmacol 17:147

    Article  Google Scholar 

  73. Conrad MD, Rosenthal PJ (2019) Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis 19:e338

    Google Scholar 

  74. Phyo AP, Win KK, Thu AM, Swe LL, Htike H, Beau C, Sriprawat K, Winterberg M, Proux S, Imwong M, Ashley EA, Nosten F (2018) Poor response to artesunate treatment in two patients with severe malaria on the Thai-Myanmar border. Malar J 17:30

    Article  PubMed  PubMed Central  Google Scholar 

  75. Greenwood D (1995) Historical perspective. Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. J Antimicrob Chemother 36:857

    Google Scholar 

  76. Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55

    Article  CAS  PubMed  Google Scholar 

  77. Sullivan DJ Jr (2017) Quinolines block every step of malaria heme crystal growth. Proc Natl Acad Sci USA 114:7483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muehlens P (1926) Die Behandlung der natuerlichen menschlichen Malaria-Infektionen mit Plasmochin. Arch Schiffs-u Tropenhyg 30:25

    Google Scholar 

  79. Nanayakkara NPN, Tekwani BL, Herath HM, Sahu R, Gettayacamin M, Tungtaeng A, van Gessel Y, Baresel P, Wickham KS, Bartlett MS, Fronczek FR, Melendez V, Ohrt C, Reichard GA, McChesney JD, Rochford R, Walker LA (2014) Scalable preparation and differential pharmacologic and toxicologic profiles of primaquine enantiomers. Antimicrob Agents Chemother 58:4737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vale N, Moreira R Gomes P (2009) Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937

    Google Scholar 

  81. Coatney CR (1961) Pitfalls in a discovery: the chronicle of chloroquine. Am J Trop Med Hyg 1963:121

    Google Scholar 

  82. Anonymous (2019) Mepacrine. https://en.wikipedia.org/wiki/Mepacrine. Accessed 18 Oct 2019

  83. Loeb RF, Clarke WM, Coateney GR, Coggeshall LT, Dieuaide FR, Dochez AR, Hakansson EG, Marshall EK, Marvel SC, McCoy OR, Sapero JJ, Serbell WH, Shannon JA, Carden GA (1946) Activity of a new antimalarial agent, chloroquine (SN 7618). J Am Med Assoc 130:1069

    Article  Google Scholar 

  84. Slater AFG (1993) Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther 57:203

    Article  CAS  PubMed  Google Scholar 

  85. Paynre D (1988) Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum? Parasitol Today 4:112

    Article  Google Scholar 

  86. Kitagawa T, Matsumoto A, Terashima I, Uesono Y (2021) Antimalarial quinacrine and chloroquine lose their activity by decreasing cationic amphiphilic structure with a slight decrease in pH. J Med Chem 64:3885

    Article  CAS  PubMed  Google Scholar 

  87. Croft AM (2007) A lesson learnt: the rise and fall of Lariam and Halfan. J R Soc Med 100:170

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tan KR, Hwang J (2018) Tafenoquine receives regulatory approval in USA for prophylaxis of malaria and radical cure of Plasmodium vivax. J Trav Med 25:1

    Article  Google Scholar 

  89. Wiesner J, Ortmann R, Jomaa H Schlitzer M (2003) New antimalarial drugs. Angew Chem Int Ed 42:5274

    Google Scholar 

  90. Talapko J, Skrlec I, Alebic T, Jukic M, Vcev A (2019) Malaria: the past and the present. Microorganisms 7:179

    Article  CAS  PubMed Central  Google Scholar 

  91. Pybus BS (2016) Synthetic vs. natural bioactive compounds against tropical disease. In: Vale N (ed) Biomedical chemistry current trends and developments. De Gruyter, Berlin, p 275

    Google Scholar 

  92. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F, Jimenez-Diaz MB, Martinez MS, Wilson EB, Tripathi AK, Gut J, Sharlow ER, Bathurst I, El Mazouni F, Fowble JW, Forquer I, McGinley PL, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal PJ, DeRisi JL, Sullivan DJ Jr, Lazo JS, Roos DS, Riscoe MK, Phillips MA, Rathod PK, Voorhis WCV, Avery VM, Guy RK (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305

    Article  CAS  PubMed  Google Scholar 

  94. Narula AK, Azad CS, Nainwal LM (2019) New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 181:111353

    Google Scholar 

  95. Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603

    Google Scholar 

  96. Hsu E (2006) Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol 61:666

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217

    Article  CAS  PubMed  Google Scholar 

  98. Yearsley C (2016) Artemisinin: a Nobel-winning antimalarial from traditional Chinese medicine. HerbalGram 110:50

    Google Scholar 

  99. Kong LY, Tan RX (2015) Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep 32:1617

    Article  CAS  PubMed  Google Scholar 

  100. Efferth T (2007) Willmar Schwabe Award 2006: Antiplasmodial and antitumor activity of artemisinin: from bench to bedside. Planta Med 73:299

    Article  CAS  PubMed  Google Scholar 

  101. Meshnick SR, Taylor TE Kamchonwongpaisan S (1996) Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev 60:301

    Google Scholar 

  102. Liu C-X (2017) Discovery and development of artemisinin and related compounds. Chin Herbal Med 9:101

    Article  Google Scholar 

  103. Anonymous (1977) A new type of sesquiterpene lactone—Qing Hau Sau. Kexue Tongbao (Chinese) 22:142

    Google Scholar 

  104. Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD, Dobek AS (1984) Isolation of artemisinin (Qinghaosu) from Artemisia annua growing in the United States. J Nat Prod 47:715

    Article  CAS  PubMed  Google Scholar 

  105. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049

    Article  CAS  PubMed  Google Scholar 

  106. Bhakuni RS, Jain DC, Sharma RP (2002) Phytochemistry of Artemisia annua and the development of artemisinin-derived antimalarial agents. In: Wright CW (ed) Artemisia. Taylor and Francis, Oxford, UK, p 211

    Google Scholar 

  107. Bhakuni RS, Jain DC, Sharma RP Kumar S (2001) Secondary metabolites of Artemisia annua and their biological activity. Curr Sci 80:35

    Google Scholar 

  108. Sangwan NS, Kumar R, Srivastava S, Kumar A, Gupta A, Sangwan RS (2010) Recent developments on secondary metabolite biosynthesis in Artemisia annua L. J Plant Biol 37:1

    Google Scholar 

  109. Ikram N, Simonsen HT (2017) A review of biotechnological artemisinin production in plants. Front Plant Sci 8:1966

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bouwmeester HJ, Wallaart TEE, Janssen MHA, Loo BV, Jansen BJM, Posthumus MA, Schmidt CO, Kraker JD, Kong WA, Franssen MCR (1999) Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin synthesis. Phytochemistry 52:843

    Article  CAS  PubMed  Google Scholar 

  111. Akhila A, Rabni K, Thakur RS (1990) Biosynthesis of artemisinic acid in Artemisia annua. Phytochemistry 29:2129

    Article  CAS  Google Scholar 

  112. Akhila A, Thakur RS, Popli SP (1987) Biosyntheis of artemisinin in Artemisia annua. Phytochemistry 26:1927

    Article  CAS  Google Scholar 

  113. Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179

    Google Scholar 

  114. Srivastava N, Akhila A (2011) Biosynthesis of artemisinin—revisited. J Plant Interact 6:265

    Article  CAS  Google Scholar 

  115. Czechowski T, Larson TR, Catania TM, Harvey D, Brown GD Graham IA (2016) Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proc Natl Acad Sci USA 113:15150

    Google Scholar 

  116. Peplow M (2018) Looking for cheaper routes to malaria medicines. Chem Eng News 96:29

    Google Scholar 

  117. Cook S (2014) Artemisinin: a case study in the evolution of synthetic strategy. Synlett 25:751

    Article  CAS  Google Scholar 

  118. Corsello MA, Garg NK (2015) Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep 32:359

    Article  CAS  PubMed  Google Scholar 

  119. Schmid G, Hofheinz W (1983) Total synthesis of qinghaosu. J Am Chem Soc 105:624

    Article  CAS  Google Scholar 

  120. Zhou W-S (1986) Total synthesis of arteannuin (Quinghaosu) and related compounds. Pure Appl Chem 58:817

    Article  CAS  Google Scholar 

  121. Xu X-X, Shu J, Huang D-Z, Zhou WS (1986) Total synthesis of artenannuin and deoxyarteannuin. Tetrahedron 42:819

    Article  CAS  Google Scholar 

  122. Zhou W-S, Xu X-X (1994) Total synthesis of the antimalarial sesquiterpene peroxide qinghaosu and yingzhaosu A. Acc Chem Res 27:211

    Article  CAS  Google Scholar 

  123. Ravindranathan T, Kumar MA, Menon RB, Hiremath SV (1990) Stereoselective synhesis of artemisinin. Tetrahedron Lett 31:755

    Article  CAS  Google Scholar 

  124. Bhonsle JB, Pandey B, Deshpande VH, Ravindranathan T (1994) New synthetic strategies towards (+)-artemisinin. Tetrahedron Lett 35:5489

    Article  CAS  Google Scholar 

  125. Liu H-J, Yeh WL, Chew SY (1993) A total synthesis of the antimalarial natural product (+)-qinghaosu. Tetrahedron Lett 34:4435

    Article  CAS  Google Scholar 

  126. Avery MA, Chong WKM, Jennings-White C (1992) Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc 114:974

    Article  CAS  Google Scholar 

  127. Yadav JS, Babu RS, Sabitha G (2003) Stereoselective total synthesis of (+)-artemisinin. Tetrahedron Lett 44:387

    Google Scholar 

  128. Yadav JS, Thirupathaiah B, Srihari P (2010) A concise stereoselective total synthesis of (+)-artemisinin. Tetrahedron 66:2005

    Article  CAS  Google Scholar 

  129. Zhu C, Cook S (2012) A concise synthesis of (+)-artemisinin. J Am Chem Soc 134:1377

    Google Scholar 

  130. Krieger J, Smeilus T, Kaiser M, Seo EJ, Efferth T Giannis A (2018) Total synthesis and biological investigation of (–)-artemisinin: the antimalarial activity of artemisinin is not stereospecific. Angew Chem Int Ed Engl 57:8293

    Google Scholar 

  131. Li ZL, Gu HM, Warhurst DC, Peters W (1983) Effects of qinghaosu and related compounds on incorporation of [G-3H] hypoxanthine by Plasmodium falciparum in vitro. Trans Roy Soc Trop Med Hyg 77:522

    Article  CAS  PubMed  Google Scholar 

  132. Kumari A, Karnatak M, Singh D, Shankar R, Jat JL, Sharma S, Yadav D, Shrivastava R, Verma VP (2019) Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem 163:804

    Article  CAS  PubMed  Google Scholar 

  133. Xu L (2017) Artesunate. In: Li G, Li Y, Li Z, Zeng M, Arnold M, Arnold K (eds) Artemisinin-based and other antimalarials: detailed account of studies by Chinese scientists who discovered and developed them. Academic Press, London, p 20

    Google Scholar 

  134. Magri NF, Kingston DGI, Jitrangsri C, Piccariello T (1986) Modified taxols. 3. Preparation and acylation of baccatin III. J Org Chem 51:3239

    Google Scholar 

  135. Presser A, Feichtinger A, Buzzi S (2017) A simplified and scalable synthesis of artesunate. Monatsh Chem 148:63

    Article  CAS  PubMed  Google Scholar 

  136. Gilmore K, Kopetzki D, Lee JW, Horvath Z, McQuade DT, Seidel-Morgenstern A, Seeberger PH (2014) Continuous synthesis of artemisinin-derived medicines. Chem Commun 50:12652

    Google Scholar 

  137. Luo X-D, Shen C-C (1987) The chemistry, pharmacology, and clinical applications of Qinghaosu (artemisinin) and its derivatives. Med Res Rev 7:29

    Article  CAS  PubMed  Google Scholar 

  138. Jeyadevan JP, Bray PG, Chadwick J, Mercer AE, Byrne A, Ward SA, Park BK, Dominic PW, Cosstick R, Davies JD, Higson AP, Irving E, Posner GH, O’Neill PM (2004) Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10β-(2-hydroxyethyl)deoxoartemisinin. J Med Chem 47:1290

    Article  CAS  PubMed  Google Scholar 

  139. Posner GH, Paik I-H, Chang W, Borstnik K, Sinishtaj S, Rosenthal AS, Shapiro TA (2007) Malaria-infected mice are cured by a single dose of novel artemisinin derivatives. J Med Chem 50:2516

    Article  CAS  PubMed  Google Scholar 

  140. Moon DK, Tripathi A, Siegler MA, Parkin S, Posner GH (2011) A single, low, oral dose of a 5-carbon-linked trioxane dimer orthoester plus mefloquine cures malaria-infected mice. Bioorg Med Chem Lett 21:2773

    Article  CAS  PubMed  Google Scholar 

  141. Jacobine AM, Mazzone JR, Slack RD, Tripathi AK, Sullivan DJ, Posner GH (2012) Malaria-infected mice live until at least day 30 after a new artemisinin-derived thioacetal thiocarbonate combined with mefloquine are administered together in a single, low, oral dose. J Med Chem 55:7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ferreira LT, Borba JVB, Moreira-Filho JT, Rimoldi A, Andrade CH, Costa FTM (2021) QSAR-based virtual screening of natural products database for identification of potent antimalarial hits. Biomolecules 11:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FCK, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H, McIntosh K, Padmanilayam M, Tomas JS, Scheurer C, Scorneaux B, Tang Y, Urwyler H, Wittlin S, Charman WN (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430:900

    Article  CAS  PubMed  Google Scholar 

  144. Rathi A (2012) Ranbaxy launches new anti-malarial Synriam. Chemistry World, RSC, London, May 2

    Google Scholar 

  145. Anonymous (2014) Ranbaxy receives approval for malaria drug Synriam from 7 African countries. Business Standard, New Delhi, December 17

    Google Scholar 

  146. Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ, Dong Y, Matile H, Maurer M, Morizzi J, Nguyen T, Papastogiannidis P, Scheurer C, Shackleford DM, Sriraghavan K, Stingelin L, Tang Y, Urwyler H, Wang X, White KL, Wittlin S, Zhou L, Vennerstrom JL (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 108:4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ (2016) Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. The Lancet Infect Dis 16:61

    Article  CAS  PubMed  Google Scholar 

  148. Anonymous (2020) Artefenomel. https://www.mmv.org/related-story-type/artefenomel. Accessed 20 Nov 2020

  149. Salim M, Khan J, Ramirez G, Murshed M, Clulow AJ, Hawley A, Ramachandruni H, Beilles S, Boyd BJ (2019) Impact of ferroquine on the solubilization of artefenomel (OZ439) during in vitro lipolysis in milk and implications for oral combination therapy for malaria. Mol Pharmaceutics 16:1658

    Article  CAS  Google Scholar 

  150. Cragg GM, Schepartz SA, Suffness M, Grever MR (1993) The taxol supply crisis. New NCI policies for handling the large scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod 56:1657

    Google Scholar 

  151. Farhi M, Kozin M, Duchin S, Vainstein A (2013) Metabolic engineering of plants for artemisinin synthesis. Biotechnol Genet Eng Rev 29:135

    Article  CAS  PubMed  Google Scholar 

  152. Kopetzki D, Levesque F, Seeberger PH (2013) A continuous-flow process for the synthesis of artemisinin. Chem Eur J 19:5450

    Article  CAS  PubMed  Google Scholar 

  153. Levesque F, Seeberger PH (2012) Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed Engl 51:1706

    Article  CAS  PubMed  Google Scholar 

  154. Holton RA, Biediger RJ, Boatman PD (1995) Semisynthesis of Taxol® and Taxotere. In: Suffness M (ed) Taxol: science and applications. CRC Press Inc., Boca Raton, FL, p 97

    Google Scholar 

  155. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhovel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3:90

    Google Scholar 

  156. Woerdenbag HJ, Lüers JFJ, van Uden W, Pras N, Malingré TM Alfermann AW (1993) Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua. Plant Cell Tissue Organ Cult 32:247

    Google Scholar 

  157. Baldi A, Dixit VK (2008) Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua. Bioresource Technol 99:4609

    Article  CAS  Google Scholar 

  158. Anonymous (2017) Phyton Biotech wins grant to develop new approaches to manufacturing artemisinin. https://phytonbiotech.com/phyton-biotech-wins-grant-develop-new-approaches-manufacturing-artemisinin-2/. Accessed 22 June 2021

  159. Liu C-Z, Guo C, Wang Y-C, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Proc Biochem 38:581

    Article  CAS  Google Scholar 

  160. Patra N, Srivastava AK (2014) Mass scale artemisinin production in a stirred tank bioreactor using hairy roots of Artemisia annua. Int J Biosci Biochem Bioinform 4:467

    CAS  Google Scholar 

  161. Patra N, Srivastava A (2016) Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. Plant Cell Rep 35:143

    Article  CAS  PubMed  Google Scholar 

  162. Patra N, Srivastava AK (2018) Mass production of artemisinin using hairy root cultivation of Artemisia annua in bioreactor. In: Pavlov A, Bley T (eds) Bioprocessing of plants in vitro systems. Springer Int Publ AG, Basel, Switzerland, p 343

    Chapter  Google Scholar 

  163. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol 21:796

    Article  CAS  Google Scholar 

  164. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528

    Google Scholar 

  166. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355

    Article  CAS  PubMed  Google Scholar 

  167. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940

    Article  CAS  PubMed  Google Scholar 

  168. Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A (2014) Semisynthetic artemisinin, the chemical path to industrial production. Org Proc Res Dev 18:417

    Article  CAS  Google Scholar 

  169. Singh D, McPhee D, Paddon CJ, Cherry J, Maurya G, Mahale G, Patel Y, Kumar N, Singh S, Sharma B, Kushwaha L, Singh S, Kumar A (2017) Amalgamation of synthetic biology and chemistry for high-throughput nonconventional synthesis of the antimalarial drug artemisinin. Org Proc Res Dev 21:551

    Article  CAS  Google Scholar 

  170. Chen H-J, Han W-B, Hao H-D, Wu Y (2013) A facile and scalable synthesis of qinghaosu (artemisinin). Tetrahedron 69:1112

    Article  CAS  Google Scholar 

  171. Haynes RK, Vonwiller SC (1997) From Qinghao, marvelous herb of antiquity, to the antimalarial trioxane qinghaosu—and some remarkable new chemistry. Acc Chem Res 30:73

    Article  CAS  Google Scholar 

  172. Tang X, Demiray M, Wirth T Allemann RK (2018) Concise synthesis of artemisinin from a farnesyl diphosphate analogue. Bioorg Med Chem 26:1314

    Google Scholar 

  173. Parayil A (2019) Manus Bio awarded next stage of funding to continue development of a novel production method for artemisinin, May 9, 2019. Global Newswire, Cambridge, MA

    Google Scholar 

  174. Covello PS (2008) Making artemisinin. Phytochemistry 69:2881

    Article  CAS  PubMed  Google Scholar 

  175. Kung SH, Lund S, Murarka A, McPhee D, Paddon CJ (2018) Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front Plant Sci 9:87

    Article  PubMed  PubMed Central  Google Scholar 

  176. Brossi A, Venugopalan B, Dominguez Gerpe L, Yeh HJC, Flippen-Anderson JL, Buchs P, Luo XD, Milhous W, Peters W (1988) Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem 31:645

    Article  CAS  PubMed  Google Scholar 

  177. Krungkrai SR, Yuthavong Y (1987) The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans R Soc Trop Med Hyg 81:710

    Article  CAS  PubMed  Google Scholar 

  178. Klonis N, Creek DJ, Tilley L (2013) Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol 16:722

    Article  CAS  PubMed  Google Scholar 

  179. Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA 108:11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Meshnick SR (2001) Artemisinin and its derivatives. In: Rosenthal PJ (ed) Antimalarial chemotherapy. Humana Press, Totowa, NJ, p 191

    Chapter  Google Scholar 

  181. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945

    Article  PubMed  CAS  Google Scholar 

  182. Haynes RK, Cheu K-W, N’Da D, Coghi P, Monti D (2013) Considerations on the mechanism of action of artemisinin antimalarials: Part 1—the ‘carbon radical’ and ‘heme’ hypotheses. Infect Disord Drug Targets 13:2117

    Google Scholar 

  183. Meunier B, Robert A (2010) Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res 43:1444

    Article  CAS  PubMed  Google Scholar 

  184. Berman PA, Adams PA (1997) Artemisinin enhances heme-catalysed oxidation of lipid membranes. Free Radical Biol Med 22:1283

    Article  CAS  Google Scholar 

  185. Wu Y (2002) How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemist‘s view. Acc Chem Res 35:255

    Google Scholar 

  186. Haynes RK, Ho WY, Chan HW, Fugmann B, Stetter J, Croft SL, Vivas L, Peters W, Robinson BL (2004) Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew Chem Int Ed Engl 43:1381

    Article  CAS  PubMed  Google Scholar 

  187. Haynes RK, Chan WC, Lung CM, Uhlemann AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S (2007) The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. ChemMedChem 2:1480

    Article  CAS  PubMed  Google Scholar 

  188. Pal C, Sarkar S, Mazumder S, Adhikari S, Bandyopadhyay U (2013) Synthesis and biological evaluation of primaquine–chloroquine twin drug: a novel heme-interacting molecule prevents free heme and hydroxyl radical-mediated protein degradation. MedChemComm 4:731

    Article  CAS  Google Scholar 

  189. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957

    Article  CAS  PubMed  Google Scholar 

  190. del Pilar CM, Avery TD, Hanssen E, Fox E, Robinson TV, Valente P, Taylor DK, Tilley L (2008) Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother 52:98

    Article  CAS  Google Scholar 

  191. Garah FB, Stigliani JL, Cosledan F, Meunier B, Robert A (2009) Docking studies of structurally diverse antimalarial drugs targeting PfATP6: no correlation between in silico binding affinity and in vitro antimalarial activity. ChemMedChem 4:1469

    Article  PubMed  CAS  Google Scholar 

  192. Asawamahasakda W, Ittarat I, Pu YM, Ziffer H, Meshnick SR (1994) Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob Agents Chemother 38:1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang J, Zhang C-J, Chia WN, Loh CC, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KS, Lin Q (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111

    Article  CAS  PubMed  Google Scholar 

  194. Ismail HM, Barton V, Phanchana M, Charoensutthivarakul S, Wong MH, Hemingway J, Biagini GA, O’Neill PM, Ward SA (2016) Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci USA 113:2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ismail HM, Barton VE, Panchana M, Charoensutthivarakul S, Biagini GA, Ward SA, O’Neill PM (2016) A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and artemisinin antimalarials share a common protein alkylation profile. Angew Chem Int Ed Engl 55:6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MM, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D (2012) Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model—a unifying proposal for drug action. ChemMedChem 7:2204

    Article  CAS  PubMed  Google Scholar 

  197. Efferth T (2017) Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 139:56

    Article  CAS  PubMed  Google Scholar 

  198. Efferth T (2017) From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 46:65

    Article  CAS  PubMed  Google Scholar 

  199. Taleghani A, Emami SA, Tayarani-Najaran Z (2020) Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem 28:115180

    Google Scholar 

  200. Mancuso RI, Foglio MA, Olalla Saad ST (2021) Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 87:1

    Article  CAS  PubMed  Google Scholar 

  201. Efferth T (2018) Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotechnol Adv 36:1730

    Article  CAS  PubMed  Google Scholar 

  202. Wu G, Cheng B, Qian H, Ma S, Chen Q (2019) Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Org Biomol Chem 17:6854

    Article  CAS  PubMed  Google Scholar 

  203. Peplow M (2020) Artemisinin raises hopes and fears amid COVID-19. Chem Eng News 98, May 27

    Google Scholar 

  204. Pepe DA, Toumpa D, André-Barrès C, Menendez C, Mouray E, Baltas M, Grellier P, Papaioannou D, Athanassopoulos CM (2020) Synthesis of novel G factor or chloroquine-artemisinin hybrids and conjugates with potent antiplasmodial activity. ACS Med Chem Lett 11:921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. New Engl J Med 361:455

    Article  CAS  PubMed  Google Scholar 

  206. Dondorp AM, Fairhurst RM, Slutsker L, MacArthur JR, Breman JG, Guerin PJ, Wellems TE, Ringwald P, Newman RD, Plowe CV (2011) The threat of artemisinin-resistant malaria. N Engl J Med 365:1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fairhurst RM, Dondorp AM (2016) Artemisinin-resistant Plasmodium falciparum malaria. Microbiol. Spectrum 4:36

    Google Scholar 

  208. Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flemming S, Toenhake CG, Schmitt M, Sabitzki R, Bergmann B, Fröhlke U, Mesén-Ramírez P, Soares AB, Herrmann H, Bártfai R, Spielmann T (2020) A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367:51

    Article  CAS  PubMed  Google Scholar 

  209. Suresh N, Haldar K (2018) Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Curr Opin Pharmacol 42:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rosenthal MR, Ng CL (2020) Plasmodium falciparum artemisinin resistance: the effect of heme, protein damage, and parasite cell stress response. ACS Infect Dis 6:1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gaillard T, Madamet M, Pradines B (2015) Tetracyclines in malaria. Malar J 14:445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1

    Article  CAS  PubMed  Google Scholar 

  213. Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50:3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tan KR, Magill AJ, Parise ME, Arguin PM (2011) Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 84:517

    Article  PubMed  PubMed Central  Google Scholar 

  215. Spizek J, Rezanka T (2004) Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol 64:455

    Article  CAS  PubMed  Google Scholar 

  216. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407

    Article  CAS  PubMed  Google Scholar 

  217. Lell B, Kremsner PG (2002) Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob Agents Chemother 46:2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Saito M, Gilder ME, McGready R, Nosten F (2018) Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 17:1129

    Article  CAS  PubMed  Google Scholar 

  219. Bakheit AH, Al-Hadiya BM, Abd-Elgalil AA (2014) Azithromycin. Profiles of drug substances, excipients, and related methodology. Elsevier, Amsterdam, p 1

    Google Scholar 

  220. Gaillard T, Dormoi J, Madamet M, Pradines B (2016) Macrolides and associated antibiotics based on similar mechanism of action like lincosamides in malaria. Malar J 15:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. van Eijk AM, Terlouw DJ (2011) Azithromycin for treating uncomplicated malaria. Cochrane Database Syst Rev 2011:CD006688

    Google Scholar 

  222. Burns AL, Sleebs BE, Siddiqui G, De Paoli AE, Anderson D, Liffner B, Harvey R, Beeson JG, Creek DJ, Goodman CD, McFadden GI, Wilson DW (2020) Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biol 18:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kuroda Y, Okuhara M, Goto T, Okamoto M, Terano H, Kohsaka M, Aoki H, Imanaka H (1980) Studies on new phosphonic acid antibiotics. IV. Structure determination of FR-33289, FR-31564 and FR-32863. J Antibiot 33:29

    Google Scholar 

  224. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573

    Article  CAS  PubMed  Google Scholar 

  225. Brücher K, Illarionov B, Held J, Tschan S, Kunfermann A, Pein MK, Bacher A, Gräwert T, Maes L, Mordmüller B, Fischer M, Kurz T (2012) α-Substituted β-oxa isosteres of fosmidomycin: synthesis and biological evaluation. J Med Chem 55:6566

    Article  PubMed  CAS  Google Scholar 

  226. Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, Mordmüller B, Grobusch MP (2015) Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol 10:1375

    Article  CAS  PubMed  Google Scholar 

  227. Guinet J, Dvorak JA, Fujioka H, Keister DB, Muratova O, Kaslow DC, Aikawa M, Vaidya AB, Wellems TE (1996) A developmental defect in Plasmodium falciparum male gametogenesis. J Cell Biol 135:269

    Article  CAS  PubMed  Google Scholar 

  228. Campbell C, Collins W, Nguyen-Dinh P, Barber A, Broderson JR (1982) Plasmodium falciparum gametocytes from culture in vitro develop to sporozoites that are infectious to primates. Science 217:1048

    Article  CAS  PubMed  Google Scholar 

  229. Bhasin VK, Trager W (1984) Gametocyte-forming and non-gametocyte-forming clones of Plasmodium falciparum. Am J Trop Med Hyg 33:534

    Article  CAS  PubMed  Google Scholar 

  230. Walliker D, Quakyi I, Wellems T, McCutchan T, Szarfman A, London W, Corcoran L, Burkot T, Carter R (1987) Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236:1661

    Article  CAS  PubMed  Google Scholar 

  231. Ponnudurai T, Leeuwenberg AD, Meuwissen JH (1981) Chloroquine sensitivity of isolates of Plasmodium falciparum adapted to in vitro culture. Trop Geogr Med 33:50

    CAS  PubMed  Google Scholar 

  232. Singh K, Agarwal A, Khan SI, Walker LA, Tekwani BL (2007) Growth, drug susceptibility, and gene expression profiling of Plasmodium falciparum cultured in medium supplemented with human serum or lipid-rich bovine serum albumin. J Biomol Screen 12:1109

    Article  CAS  PubMed  Google Scholar 

  233. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906

    Article  CAS  PubMed  Google Scholar 

  234. Handunnetti SM, Hasler TH, Howard RJ (1992) Plasmodium falciparum-infected erythrocytes do not adhere well to C32 melanoma cells or CD36 unless rosettes with uninfected erythrocytes are first disrupted. Infect Immun 60:928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jensen JB, Trager WP (1978) Plasmodium falciparum in culture: Establishment of additional strains. Am J Trop Med Hyg 27:743

    Article  CAS  PubMed  Google Scholar 

  236. Burkot TR, Williams JL, Schneider I (1984) Infectivity to mosquitoes of Plasmodium falciparum clones grown in vitro from the same isolate. Trans R Soc Trop Med Hyg 78:339

    Article  CAS  PubMed  Google Scholar 

  237. Thaithong S, Beale GH, Chutmongkonkul M (1983) Susceptibility of Plasmodium falciparum to five drugs: an in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg 77:228

    Article  CAS  PubMed  Google Scholar 

  238. Sullivan JS, Sullivan JJ, Williams A, Grady KK, Bounngaseng A, Huber CS, Nace D, Williams T, Galland GG, Barnwell JW, Collins WE (2003) Adaptation of a strain of Plasmodium falciparum from Ghana to Aotus lemurinus griseimembra, A. nancymai, and A. vociferans monkeys. Am J Trop Med Hyg 69:593

    Google Scholar 

  239. Collins WE, Warren M, Skinner JC, Chin W, Richardson BB (1977) Studies on the Santa Lucia (El Salvador) strain of Plasmodium falciparum in Aotus trivirgatus monkeys. J Parasitol 63:52

    Article  CAS  PubMed  Google Scholar 

  240. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su X-Z (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320

    Article  CAS  PubMed  Google Scholar 

  241. Siddiqui WA, Schnell JV (1973) Use of various buffers for in vitro cultivation of malarial parasites. J Parasitol 59:516

    Article  CAS  PubMed  Google Scholar 

  242. Chen P, Lamont G, Lamont TE, Kidson C, Brown G, Mitchell G, Stace J, Alpers M (1980) Plasmodium falciparum strains from Papua New Guinea: culture characteristics and drug sensitivity. SE Asian J Trop Med Public Health 11:435

    CAS  Google Scholar 

  243. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116

    Article  CAS  PubMed  Google Scholar 

  244. Saraiva RG, Dimopoulos G (2020) Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 37:338

    Article  CAS  PubMed  Google Scholar 

  245. Tajuddeen N, van Heerden FR (2019) Antiplasmodial natural products: an update. Malar J 18:404

    Article  PubMed  PubMed Central  Google Scholar 

  246. Schwikkard S, van Heerden FR (2002) Antimalarial activity of plant metabolites. Nat Prod Rep 19:675

    Article  CAS  PubMed  Google Scholar 

  247. Wright CW (2010) Recent developments in research on terrestrial plants used for the treatment of malaria. Nat Prod Rep 27:961

    Article  CAS  PubMed  Google Scholar 

  248. Wright CW (2015) Searching for new treatments of malaria. In: Heinrich M, Jäger AT (eds) Ethnopharmacology. Wiley-Blackwell, Chichester, UK, p 123

    Google Scholar 

  249. Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ (2018) Antimalarial activity of plant metabolites. Int J Mol Sci 19:1382

    Article  PubMed Central  CAS  Google Scholar 

  250. Bekono BD, Ntie-Kang F, Onguene PA, Lifongo LL, Sippl W, Fester K, Owono LCO (2020) The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J 19:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Silva GNS, Rezende LCD, Emery FS, Gosmann G, Gnoatto SCB (2015) Natural and semi-synthetic antimalarial compounds: emphasis on the terpene class. Mini Rev Med Chem 15:809

    Article  CAS  PubMed  Google Scholar 

  252. Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229

    Article  CAS  PubMed  Google Scholar 

  253. Nair JJ, van Staden J (2019) Antiplasmodial lycorane alkaloid principles of the plant family Amaryllidaceae. Planta Med 85:637

    Article  CAS  PubMed  Google Scholar 

  254. Nair JJ, van Staden J (2019) The Amaryllidaceae as a source of antiplasmodial crinane alkaloid constituents. Fitoterapia 134:305

    Article  CAS  PubMed  Google Scholar 

  255. Morita H, Oshimi S, Hirasawa Y, Koyama K, Honda T, Ekasari W, Indrayanto G, Zaini NC (2007) Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea. Org Lett 9:3691

    Article  CAS  PubMed  Google Scholar 

  256. Ekasari W, Widyawaruyanti A, Zaini NC, Syafruddin D, Honda T, Morita H (2009) Antimalarial activity of cassiarin A from the leaves of Cassia siamea. Heterocycles 78:1831

    Article  CAS  Google Scholar 

  257. Rudyanto M, Tomizawa Y, Morita H, Honda T (2008) First total synthesis of cassiarin A, a naturally occurring potent antiplasmodial alkaloid. Org Lett 10:1921

    Article  CAS  PubMed  Google Scholar 

  258. Wang H, Cao F, Gao W, Wang X, Yang Y, Shi T, Wang Z (2021) Pd(II)-Catalyzed annulation reactions of epoxides with benzamides to synthesize isoquinolones. Org Lett 23:863

    Article  CAS  PubMed  Google Scholar 

  259. Gutierrez S, Coppola A, Sucunza D, Burgos C, Vaquero JJ (2016) Synthesis of 1-substituted isoquinolines by heterocyclization of TosMIC derivatives: total synthesis of cassiarin A. Org Lett 18:3378

    Article  CAS  PubMed  Google Scholar 

  260. Luesakul U, Palaga T, Krusong K, Ngamrojanavanich N, Vilaivan T, Puthong S, Muangsin N (2014) Synthesis, cytotoxicity, DNA binding and topoisomerase II inhibition of cassiarin A derivatives. Bioorg Med Chem Lett 24:2845

    Article  CAS  PubMed  Google Scholar 

  261. Morita H, Tomizawa Y, Deguchi J, Ishikawa T, Arai H, Zaima K, Hosoya T, Hirasawa Y, Matsumoto T, Kamata K, Ekasari W, Widyawaruyanti A, Wahyuni TS, Zaini NC, Honda T (2009) Synthesis and structure-activity relationships of cassiarin A as potential antimalarials with vasorelaxant activity. Bioorg Med Chem 17:8234

    Article  CAS  PubMed  Google Scholar 

  262. Presley CC, Du Y, Dalal S, Merino EF, Butler JH, Rakotonandrasana S, Rasamison VE, Cassera MB, Kingston DGI (2017) Isolation, structure elucidation, and synthesis of antiplasmodial quinolones from Crinum firmifolium. Bioorg Med Chem 25:4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kancharla P, Dodean RA, Li Y, Pou S, Pybus B, Melendez V, Read L, Bane CE, Vesely B, Kreishman-Deitrick M, Black C, Li Q, Sciotti RJ, Olmeda R, Luong TL, Gaona H, Potter B, Sousa J, Marcsisin S, Caridha D, Xie L, Vuong C, Zeng Q, Zhang J, Zhang P, Lin H, Butler K, Roncal N, Gaynor-Ohnstad L, Leed SE, Nolan C, Ceja FG, Rasmussen SA, Tumwebaze PK, Rosenthal PJ, Mu J, Bayles BR, Cooper RA, Reynolds KA, Smilkstein MJ, Riscoe MK, Kelly JX (2020) Lead optimization of second-generation acridones as broad-spectrum antimalarials. J Med Chem 63:6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Du Y, Valenciano AL, Dai Y, Zheng Y, Zhang F, Zhang Y, Clement J, Goetz M, Kingston DGI, Cassera MB (2020) Anibamine and its analogues: potent antiplasmodial agents from Aniba citrifolia. J Nat Prod 83:569

    Article  CAS  PubMed  Google Scholar 

  265. François G, Timperman G, Eling W, Assi LA, Holenz J, Bringmann G (1997) Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine A against Plasmodium berghei in vivo. Antimicrob Agents Chemother 41:2533

    Article  PubMed  PubMed Central  Google Scholar 

  266. Schwedhelm KF, Horstmann M, Faber JH, Reichert Y, Bringmann G, Faber C (2007) The novel antimalarial compound dioncophylline C forms a complex with heme in solution. ChemMedChem 2:541

    Article  CAS  PubMed  Google Scholar 

  267. Bringmann G, Zhang G, Olschlager T, Stich A, Wu J, Chatterjee M, Brun R (2013) Highly selective antiplasmodial naphthylisoquinoline alkaloids from Ancistrocladus tectorius. Phytochemistry 91:220

    Article  CAS  PubMed  Google Scholar 

  268. Li J, Seupel R, Feineis D, Mudogo V, Kaiser M, Brun R, Brunnert D, Chatterjee M, Seo EJ, Efferth T, Bringmann G (2017) Dioncophyllines C2, D2, and F and related naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus ileboensis with potent activities against Plasmodium falciparum and against multiple myeloma and leukemia cell lines. J Nat Prod 80:443

    Article  CAS  PubMed  Google Scholar 

  269. Bringmann G, Messer K, Schwöbel B, Brun R, Assi LA (2003) Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry 62:345

    Article  CAS  PubMed  Google Scholar 

  270. Xu M, Bruhn T, Hertlein B, Brun R, Stich A, Wu J, Bringmann G (2010) Shuangancistrotectorines A–E, dimeric naphthylisoquinoline alkaloids with three chiral biaryl axes from the Chinese plant Ancistrocladus tectorius. Chem Eur J 16:4206

    Article  CAS  PubMed  Google Scholar 

  271. Bringmann G, Lombe BK, Steinert C, Ioset KN, Brun R, Turini F, Heubi G, Mudogo V (2013) Mbandakamines A and B, unsymmetrically coupled dimeric naphthylisoquinoline alkaloids, from a Congolese Ancistrocladus species. Org Lett 15:2590

    Article  CAS  PubMed  Google Scholar 

  272. Tshitenge DT, Feineis D, Mudogo V, Kaiser M, Brun R, Seo EJ, Efferth T, Bringmann G (2018) Mbandakamine-type naphthylisoquinoline dimers and related alkaloids from the Central African liana Ancistrocladus ealaensis with antiparasitic and antileukemic activities. J Nat Prod 81:918

    Article  CAS  PubMed  Google Scholar 

  273. Fayez S, Li J, Feineis D, Ake Assi L, Kaiser M, Brun R, Anany MA, Wajant H, Bringmann G (2019) A near-complete series of four atropisomeric jozimine A2-type naphthylisoquinoline dimers with antiplasmodial and cytotoxic activities and related alkaloids from Ancistrocladus abbreviatus. J Nat Prod 82:3033

    Article  CAS  PubMed  Google Scholar 

  274. Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V (2013) Jozimine A2: the first dimeric Dioncophyllaceae-type naphthylisoquinoline alkaloid, with three chiral axes and high antiplasmodial activity. Chem Eur J 19:916

    Article  CAS  PubMed  Google Scholar 

  275. Lombe BK, Bruhn T, Feineis D, Mudogo V, Brun R, Bringmann G (2017) Cyclombandakamines A1 and A2, oxygen-bridged naphthylisoquinoline dimers from a Congolese Ancistrocladus liana. Org Lett 19:1342

    Article  CAS  PubMed  Google Scholar 

  276. Lombe BK, Feineis D, Mudogo V, Kaiser M, Bringmann G (2021) Spirombandakamine A3 and cyclombandakamines A8 and A9, polycyclic naphthylisoquinoline dimers, with antiprotozoal activity, from a Congolese Ancistrocladus plant. J Nat Prod 84:1335

    Article  CAS  PubMed  Google Scholar 

  277. Moyo P, Shamburger W, van der Watt ME, Reader J, de Sousa ACC, Egan TJ, Maharaj VJ, Bringmann G, Birkholtz LM (2020) Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. Int J Parasitol Drugs Drug Resist 13:51

    Article  PubMed  PubMed Central  Google Scholar 

  278. Bouquet J, Rivaud M, Chevalley S, Deharo E, Jullian V, Valentin A (2012) Biological activities of nitidine, a potential anti-malarial lead compound. Malaria J 11:67

    Article  CAS  Google Scholar 

  279. Gakunju DMN, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, Watkins WM (1995) Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrob Agents Chemother 39:2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of root extracts of Fagara zanthoxyloides on the in vitro growth and stage distribution of Plasmodium falciparum. Antimicrob Agents Chemother 49:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Rivaud M, Mendoza A, Sauvain M, Valentin A, Jullian V (2012) Short synthesis and antimalarial activity of fagaronine. Bioorg Med Chem 20:4856

    Article  CAS  PubMed  Google Scholar 

  282. Goodman CD, Austarheim I, Mollard V, Mikolo B, Malterud KE, McFadden GI, Wangensteen H (2016) Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J 15:481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Fadaeinasab M, Taha H, Fauzi PNM, Ali HM, Widyawaruyanti A (2015) Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat Prod Commun 10:1541

    PubMed  Google Scholar 

  284. Zahari A, Cheah F, Mohamad J, Sulaiman S, Litaudon M, Leong K, Awang K (2014) Antiplasmodial and antioxidant isoquinoline alkaloids from Dehaasia longipedicellata. Planta Med 80:599

    Article  CAS  PubMed  Google Scholar 

  285. Kanyanga CR, Munduku KC, Lumpu NS, Ehata TM, Bool-Miting MF, Kabangu KO, Maya MB, Cos P, Maes L, Vlietinck AJ, Tuenter E, Foubert K, Pieters L (2018) Isolation and structure elucidation of two antiprotozoal bisbenzylisoquinoline alkaloids from Triclisia gilletii stem bark. Phytochem Lett 28:19

    Article  CAS  Google Scholar 

  286. Nonaka M, Murata Y, Takano R, Han Y, Kabir MHB, Kato K (2018) Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts. Malar J 17:244

    Article  PubMed  PubMed Central  Google Scholar 

  287. Wright CW, Marshall SJ, Russell PF, Anderson MM, Phillipson JD, Kirby GC, Warhurst DC, Schiff PL (2000) In vitro antiplasmodial, antiamoebic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J Nat Prod 63:1638

    Article  CAS  PubMed  Google Scholar 

  288. Teklemichael AA, Mizukami S, Toume K, Mosaddeque F, Kamel MG, Kaneko O, Komatsu K, Karbwang J, Huy NT, Hirayama K (2020) Anti-malarial activity of traditional Kampo medicine Coptis rhizome extract and its major active compounds. Malar J 19:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Frederich M, Tits M, Angenot L (2008) Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg 102:11

    Article  CAS  PubMed  Google Scholar 

  290. Rosales PF, Bordin GS, Gower AE, Moura S (2020) Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 143:104558

    Google Scholar 

  291. Rocha e Silva LF, Montoia A, Amorim RCN, Melo MR, Henrique MC, Nunomura SM, Costa MRF, Andrade Netoe VF, Costa DS, Dantas G, Lavrado J, Moreira R, Paulo A, Pinto AC, Tadei WP, Zacardi RS, Eberlin MN, Pohlit AM (2012) Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine 20:71

    Google Scholar 

  292. Onyeibor O, Croft SL, Dodson HI, Feiz-Haddad M, Kendrick H, Millington NJ, Parapini S, Phillips RM, Seville S, Shnyder SD, Taramelli D, Wright CW (2005) Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J Med Chem 48:2701

    Article  CAS  PubMed  Google Scholar 

  293. Wright CW (2007) Recent developments in naturally derived antimalarials: cryptolepine analogues. J Pharm Pharmacol 59:899

    Article  CAS  PubMed  Google Scholar 

  294. Forkuo AD, Ansah C, Mensah KB, Annan K, Gyan B, Theron A, Mancama D, Wright CW (2017) In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine. Malar J 16:496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GDS (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513

    Article  CAS  Google Scholar 

  296. Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78–12A. J Nat Prod 68:1793

    Article  CAS  PubMed  Google Scholar 

  297. Barbaras D, Kaiser M, Brun R, Gademann K (2008) Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorg Med Chem Lett 18:4413

    Article  CAS  PubMed  Google Scholar 

  298. Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA, Wittmann C (2013) Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20:29

    Article  CAS  PubMed  Google Scholar 

  299. Wilkinson MD, Lai H-E, Freemont PS, Baum J (2020) A biosynthetic platform for antimalarial drug discovery. Antimicrob Agents Chemother 64:e02129

    Google Scholar 

  300. Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM (2009) Flinderoles A–C: antimalarial bis-indole alkaloids from Flindersia species. Org Lett 11:329

    Article  CAS  PubMed  Google Scholar 

  301. Robertson LP, Duffy S, Wang Y, Wang D, Avery VM, Carroll AR (2017) Pimentelamines A-C, indole alkaloids isolated from the leaves of the Australian tree Flindersia pimenteliana. J Nat Prod 80:3211

    Article  CAS  PubMed  Google Scholar 

  302. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404

    Article  CAS  Google Scholar 

  303. Zhou B-N, Slebodnick C, Johnson RK, Mattern MR, Kingston DGI (2000) New cytotoxic manzamine alkaloids from a Palaun sponge. Tetrahedron 56:5781

    Article  CAS  Google Scholar 

  304. Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Waters AL, Peraud O, Kasanah N, Sims JW, Kothalawala N, Anderson MA, Abbas SH, Rao KV, Jupally VR, Kelly M, Dass A, Hill RT, Hamann MT (2014) An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front Mar Sci 1:54

    Article  PubMed  PubMed Central  Google Scholar 

  306. Peng J, Kudrimoti S, Prasanna S, Odde S, Doerksen RJ, Pennaka HK, Choo YM, Rao KV, Tekwani BL, Madgula V, Khan SI, Wang B, Mayer AM, Jacob MR, Tu LC, Gertsch J, Hamann MT (2010) Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J Med Chem 53:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Frédérich M, Jacquier M-J, Thepenier P, De Mol P, Tits M, Philippe G, Delaude C, Angenot L, Zeches-Hanrot M (2002) Antiplasmodial activity of alkaloids from various Strychnos species. J Nat Prod 65:1381

    Article  PubMed  CAS  Google Scholar 

  308. van Pelt-Koops JC, Pett HE, Graumans W, van der Vegte-Bolmer M, van Gemert GJ, Rottmann M, Yeung BKS, Diagana TT, Sauerwein RW (2012) The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to Anopheles mosquito vector. Antimicrob Agents Chemother 56:3544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck H-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Ashton TD, Devine SM, Mohrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE (2019) The development process for discovery and clinical advancement of modern antimalarials. J Med Chem 62:10526

    Article  CAS  PubMed  Google Scholar 

  311. Bouwman SA, Zoleko-Manego R, Renner KC, Schmitt EK, Mombo-Ngoma G, Grobusch MP (2020) The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med Infect Dis 36:101765

    Google Scholar 

  312. Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TNC, Willis PA (2013) The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One 8:e62906

    Google Scholar 

  313. Bowman JD, Merino EF, Brooks CF, Striepen B, Carlier PR, Cassera MB (2014) Antiapicoplast and gametocytocidal screening to identify the mechanisms of action of compounds within the malaria box. Antimicrob Agents Chemother 58:811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Ghavami M, Merino EF, Yao ZK, Elahi R, Simpson ME, Fernandez-Murga ML, Butler JH, Casasanta MA, Krai PM, Totrov MM, Slade DJ, Carlier PR Cassera MB (2018) Biological studies and target engagement of the 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD)-targeting antimalarial agent (1R,3S)-MMV008138 and analogs. ACS Infect Dis 4:549

    Google Scholar 

  315. Gorki V, Walter NS, Singh R, Chauhan M, Dhingra N, Salunke DB, Kaur S (2020) β-Carboline derivatives tackling malaria: biological evaluation and docking analysis. ACS Omega 5:17993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Chierrito TPC, Aguiar ACC, de Andrade IM, Ceravolo IP, Gonçalves RAC, de Oliveira AJB, Krettli AU (2014) Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malaria J 13:e142

    Google Scholar 

  317. Nugroho AE, Sugai M, Hirasawa Y, Hosoya T, Awang K, Hadi AH, Ekasari W, Widyawaruyanti A, Morita H (2011) New antiplasmodial indole alkaloids from Hunteria zeylanica. Bioorg Med Chem Lett 21:3417

    Article  CAS  PubMed  Google Scholar 

  318. Paciaroni NG, Perry DL II, Norwood IV, Murillo Solano C, Collins J, Tenneti S, Chakrabarti D, Huigens RW III (2020) Re-engineering of yohimbine’s biological activity through ring distortion: identification and structure-activity relationships of a new class of antiplasmodial agents. ACS Infect Dis 6:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Wright CW, Allen D, Cai Y, Chen Z, Phillipson JD, Kirby GC, Warhurst DC, Tits M, Angenot L (1994) Selective antiprotozoal activity of some Strychnos alkaloids. Phytother Res 8:149

    Article  CAS  Google Scholar 

  320. Nugroho AE, Hirasawa Y, Piow WC, Kaneda T, Hadi AH, Shirota O, Ekasari W, Widyawaruyanti A, Morita H (2012) Antiplasmodial indole alkaloids from Leuconotis griffithii. J Nat Med 66:350

    Article  CAS  PubMed  Google Scholar 

  321. Frederich M, De Pauw M-C, Llabres G, Tits M, Hayette M-P, Brandt V, Penelle J, De Mol P, Angenot L (2000) New antimalarial and cytotoxic sungucine derivatives from Strychnos icaja roots. Planta Med 66:262

    Article  CAS  PubMed  Google Scholar 

  322. Beaufay C, Ledoux A, Jansen O, Bordignon A, Zhao S, Teijaro CN, Andrade RB, Quetin-Leclercq J, Frédérich M (2018) In vivo antimalarial and antitrypanosomal activity of strychnogucine B, a bisindole alkaloid from Strychnos icaja. Planta Med 84:881

    Article  CAS  PubMed  Google Scholar 

  323. Davis RA, Duffy S, Fletcher S, Avery VM, Quinn RJ (2013) Thiaplakortones A–D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita. J Org Chem 78:9608

    Article  CAS  PubMed  Google Scholar 

  324. Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, White KL, Shackleford DM, Edstein MD, Andrews KT, Camp D, Quinn RJ (2012) Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J Med Chem 55:5851

    Article  CAS  PubMed  Google Scholar 

  325. Lam CFC, Cadelis MM Copp BR (2020) Exploration of the electrophilic reactivity of the cytotoxic marine alkaloid discorhabdin C and subsequent discovery of a new dimeric C-1/N-13-linked discorhabdin natural product. Mar Drugs 18:404

    Google Scholar 

  326. Koeffli JB, Brockman JA, Moffat J (1950) The structure of febrifugine and isofebrifugine. J Am Chem Soc 72:3323

    Article  Google Scholar 

  327. Coatney GR, Cooper WC, Culwell WB, White WC, Imboden Jr CA (1950) Studies in human malaria. XXV. Trial of febrifugine, an alkaloid obtained from Dichroa febrifuga Lour., against the Chesson strain of Plasmodium vivax. J Natl Malar Soc 9:183

    Google Scholar 

  328. Zhu S, Zhang Q, Gudise C, Wei L, Smith E, Zeng Y (2009) Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents. Bioorg Med Chem 17:4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Zhu S, Chandrashekar G, Meng L, Robinson K, Chatterji D (2012) Febrifugine analogue compounds: synthesis and antimalarial evaluation. Bioorg Med Chem 20:927

    Article  CAS  PubMed  Google Scholar 

  330. Pines M, Spector I (2015) Halofuginone—the multifaceted molecule. Molecules 20:573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Fagbami L, Deik AA, Singh K, Santos SA, Herman JD, Bopp SE, Lukens AK, Clish CB, Wirth DF, Mazitschek R (2019) The adaptive proline response in P. falciparum is independent of PfeIK1 and eIF2alpha signaling. ACS Infect Dis 5:515

    Google Scholar 

  332. McLaughlin NP, Evans P, Pines M (2014) The chemistry and biology of febrifugine and halofuginone. Bioorg Med Chem 22:1993

    Article  CAS  PubMed  Google Scholar 

  333. Kikuchi H, Horoiwa S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y (2014) Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial. Eur J Med Chem 76:10

    Article  CAS  PubMed  Google Scholar 

  334. Bhuyan BK (1962) Pactamycin production by Streptomyces pactum. Appl Microbiol 10:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Otoguro K, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tukashima A, Shibahara S, Kondo S, Yamada H, Omura S (2010) Promising lead compounds for novel antiprotozoals. J Antibiot 63:381

    Article  CAS  Google Scholar 

  336. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355

    Article  CAS  Google Scholar 

  337. Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine Actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3:e2335

    Google Scholar 

  338. Ito Y, Ohashi Y, Sakurai Y, Sakurazawa M, Yoshida H, Shigemi A, Okuda T (1968) New basic water-soluble antibiotics BD-12 and BY-81. II. Isolation, purification and properties. J Antibiot 21:307

    Google Scholar 

  339. Kawakami Y, Yamasaki K, Nakamura S (1981) The structures of component A1 (=LL-AB664) and component A2 (=LL-AC 541), streptothricin-like antibiotics. J Antibiot 34:921

    Article  CAS  Google Scholar 

  340. Kubo M, Yatsuzuka W, Matsushima S, Harada K, Inoue Y, Miyamoto H, Matsumoto M, Fukuyama Y (2016) Antimalarial phenanthroindolizine alkaloids from Ficus septica. Chem Pharm Bull 64:957

    Article  CAS  Google Scholar 

  341. Wasserman HH, Rodgers GC Keith DD (1969) Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J Am Chem Soc 91:1263

    Google Scholar 

  342. Kim H-S, Hayashi M, Shibata Y, Wataya T, Mitamura T, Horii T, Kawauchi K, Hirata H, Tsuboi S, Moriyama Y (1999) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. Biol Pharm Bull 22:532

    Article  CAS  PubMed  Google Scholar 

  343. Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y (2002) Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother 46:1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Vitale GA, Sciarretta M, Palma Esposito F, January GG, Giaccio M, Bunk B, Spröer C, Bajerski F, Power D, Festa C, Monti MC, D’Auria MV, de Pascale D (2020) Genomics–metabolomics profiling disclosed marine Vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. J Nat Prod 83:1495

    Google Scholar 

  345. Kancharla P, Li Y, Yeluguri M, Dodean RA, Reynolds KA, Kelly JX (2021) Total synthesis and antimalarial activity of 2-(p-hydroxybenzyl)-prodigiosins, isoheptylprodigiosin, and geometric isomers of tambjamine MYP1 isolated from marine bacteria. J Med Chem 64:8739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Ilias M, Ibrahim MA, Khan SI, Jacob MR, Tekwani BL, Walker LA, Samoylenko V (2012) Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med 78:1690

    Article  CAS  PubMed  Google Scholar 

  347. Xu M, Andrews KT, Birrell GW, Tran TL, Camp D, Davis RA, Quinn RJ (2011) Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg Med Chem Lett 21:846

    Article  CAS  PubMed  Google Scholar 

  348. Velten R, Erdelen C, Gehling M, Göhrt A, Gondol D, Lenz J, Lockhoff O, Wachendorff U, Wendisch D (1998) Cripowellin A and B, a novel type of Amaryllidaceae alkaloid from Crinum powellii. Tetrahedron Lett 39:1737

    Article  CAS  Google Scholar 

  349. Presley CC, Krai P, Dalal S, Su Q, Cassera M, Goetz M, Kingston DGI (2016) New potently bioactive alkaloids from Crinum erubescens. Bioorg Med Chem 24:5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Ferreira MC, Cantrell CL, Wedge DE, Goncalves VN, Jacob MR, Khan S, Rosa CA, Rosa LH (2017) Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem Inst Oswaldo Cruz 112:692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Cikos AM, Jurin M, Coz-Rakovac R, Jokic S, Jerkovic I (2019) Update on monoterpenes from red macroalgae: isolation, analysis, and bioactivity. Mar Drugs 17:537

    Article  CAS  PubMed Central  Google Scholar 

  352. Afolayan AF, Mann MG, Lategan CA, Smith PJ, Bolton JJ, Beukes DR (2009) Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry 70:597

    Article  CAS  PubMed  Google Scholar 

  353. Schnermann MJ, Shenvi RA (2015) Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat Prod Rep 32:543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Angerhofer CK, Pezzuto JM, König GM, Wright AD, Sticher O (1992) Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J Nat Prod 55:1787

    Article  CAS  PubMed  Google Scholar 

  355. White AM, Pierens GK, Skinner-Adams T, Andrews KT, Bernhardt PV, Krenske EH, Mollo E, Garson MJ (2015) Antimalarial isocyano and isothiocyanato sesquiterpenes with tri- and bicyclic skeletons from the nudibranch Phyllidia ocellata. J Nat Prod 78:1422

    Article  CAS  PubMed  Google Scholar 

  356. Wright AD, McCluskey A, Robertson MJ, MacGregor KA, Gordon CP, Guenther J (2011) Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi. Org Biomol Chem 9:400

    Google Scholar 

  357. Pronin SV, Shenvi RA (2012) Synthesis of a potent antimalarial amphilectene. J Am Chem Soc 134:19604

    Article  CAS  PubMed  Google Scholar 

  358. Lu H-H, Pronin SV, Antonova-Koch Y, Meister S, Winzeler EA, Shenvi RA (2016) Synthesis of (+)-7,20-diisocyanoadociane and liver-stage antiplasmodial activity of the isocyanoterpene class. J Am Chem Soc 138:7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Wright AD, Wang H, Gurrath M, König GM, Kocak G, Neumann G, Loria P, Foley M, Tilley L (2001) Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 44:873

    Article  CAS  PubMed  Google Scholar 

  360. Young RM, Adendorff MR, Wright AD, Davies-Coleman MT (2015) Antiplasmodial activity: the first proof of inhibition of heme crystallization by marine isonitriles. Eur J Med Chem 93:373

    Article  CAS  PubMed  Google Scholar 

  361. Aviles E, Prudhomme J, Le Roch KG, Rodriguez AD (2015) Structures, semisyntheses, and absolute configurations of the antiplasmodial alpha-substituted β-lactam monamphilectines B and C from the sponge Svenzea flava. Tetrahedron 71:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Miyaoka H, Shimomura M, Kimura H, Yamada Y, Kim H-S, Yusuke W (1998) Antimalarial activity of kalihinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 54:13467

    Google Scholar 

  363. Daub ME, Prudhomme J, Le Roch K, Vanderwal CD (2015) Synthesis and potent antimalarial activity of kalihinol B. J Am Chem Soc 137:4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Daub ME, Prudhomme J, Ben Mamoun C, Le Roch KG, Vanderwal CD (2017) Antimalarial properties of simplified kalihinol analogues. ACS Med Chem Lett 8:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Kyei-Baffour K, Davis DC, Boskovic Z, Kato N, Dai M (2020) Natural product-inspired aryl isonitriles as a new class of antimalarial compounds against drug-resistant parasites. Bioorg Med Chem 28:115678

    Google Scholar 

  366. Mohammad H, Kyei-Baffour K, Abutaleb NS, Dai M, Seleem MN (2019) An aryl isonitrile compound with an improved physicochemical profile that is effective in two mouse models of multidrug-resistant Staphylococcus aureus infection. J Glob Antimicrob Resist 19:1

    Article  PubMed  PubMed Central  Google Scholar 

  367. Kyei-Baffour K, Mohammad H, Seleem MN, Dai M (2019) Second-generation aryl isonitrile compounds targeting multidrug-resistant Staphylococcus aureus. Bioorg Med Chem 27:1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Nyaba ZN, Murambiwa P, Opoku AR, Mukaratirwa S, Shode FO, Simelane MBC (2018) Isolation, characterization, and biological evaluation of a potent anti-malarial drimane sesquiterpene from Warburgia salutaris stem bark. Malar J 17:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  369. Morita H, Mori R, Deguchi J, Oshimi S, Hirasawa Y, Ekasari W, Widyawaruyanti A, Hadi AH (2012) Antiplasmodial decarboxyportentol acetate and 3,4-dehydrotheaspirone from Laumoniera bruceadelpha. J Nat Med 66:571

    Article  CAS  PubMed  Google Scholar 

  370. Efange SM, Brun R, Wittlin S, Connolly JD, Hoye TR, McAkam T, Makolo FL, Mbah JA, Nelson DP, Nyongbela KD, Wirmum CK (2009) Okundoperoxide, a bicyclic cyclofarnesylsesquiterpene endoperoxide from Scleria striatinux with antiplasmodial activity. J Nat Prod 72:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Shen Y, Cui SJ, Chen H, Shen L, Wang M, Dong X, Xiao CJ, Jiang B (2020) Antimalarial eudesmane sesquiterpenoids from Dobinea delavayi. J Nat Prod 83:927

    Article  CAS  PubMed  Google Scholar 

  372. Moon HI (2007) Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitol Res 100:1147

    Article  PubMed  Google Scholar 

  373. Chung IM, Kim MY, Moon HI (2008) Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitol Res 103:341

    Article  PubMed  Google Scholar 

  374. Zhou B, Wu Y, Dalal S, Merino EF, Liu QF, Xu CH, Yuan T, Ding J, Kingston DGI, Cassera MB, Yue JM (2017) Nanomolar antimalarial agents against chloroquine-resistant Plasmodium falciparum from medicinal plants and their structure-activity relationships. J Nat Prod 80:96

    Article  CAS  PubMed  Google Scholar 

  375. Chukwujekwu JC, Smith P, Coombes PH, Mulholland DA, van Staden J (2005) Antiplasmodial diterpenoid from the leaves of Hyptis suaveolens. J Ethnopharmacol 102:295

    Article  CAS  PubMed  Google Scholar 

  376. Seephonkai P, Pyne SG, Willis AC, Lie W (2013) Bioactive compounds from the roots of Strophioblachia fimbricalyx. J Nat Prod 76:1358

    Article  CAS  PubMed  Google Scholar 

  377. Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R Hamburger M (2013) Abietane diterpenoids from Salvia sahendica—antiprotozoal activity and determination of their absolute configurations. Planta Med 79:150

    Google Scholar 

  378. Gonzalez MA, Clark J, Connelly M, Rivas F (2014) Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg Med Chem Lett 24:5234

    Article  CAS  PubMed  Google Scholar 

  379. Liu J, He X-F, Wang G-H, Merino EF, Yang S-P, Zhu R-X, Gan L-S, Zhang H, Cassera MB, Wang H-Y, Kingston DGI, Yue J-M (2014) Aphadilactones A–D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant. J Org Chem 79:599

    Article  CAS  PubMed  Google Scholar 

  380. Yin JP, Gu M, Li Y, Nan FJ (2014) Total synthesis of aphadilactones A–D. J Org Chem 79:6294

    Article  CAS  PubMed  Google Scholar 

  381. Thiem DA, Sneden AT, Khan SI, Tekwani BL (2005) Bisnortriterpenes from Salacia madagascariensis. J Nat Prod 68:251

    Article  CAS  PubMed  Google Scholar 

  382. Du Y, Martin BA, Valenciano AL, Clement JA, Goetz M, Cassera MB, Kingston DGI (2020) Galtonosides A–E: antiproliferative and antiplasmodial cholestane glycosides from Galtonia regalis. J Nat Prod 83:1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Muhammad I, Samoylenko V (2007) Antimalarial quassinoids: past, present and future. Expert Opin Drug Discov 2:1065

    Article  CAS  PubMed  Google Scholar 

  384. Li Z, Ruan J-Y, Sun F, Yan J-J, Wang J-L, Zhang Z-X, Zhang Y, Wang T (2019) Relationship between structural characteristics and plant sources along with pharmacology research of quassinoids. Chem Pharm Bull 67:654

    Article  CAS  Google Scholar 

  385. Bertani S, Houel E, Stien D, Chevolot L, Jullian V, Garavito G, Bourdy G, Deharo E (2006) Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with Quassia amara L. (Simaroubaceae). J Ethnopharmacol 108:155

    Google Scholar 

  386. Bertani S, Houel E, Jullian V, Bourdy G, Valentin A, Stien D, Deharo E (2012) New findings on simalikalactone D, an antimalarial compound from Quassia amara L. (Simaroubaceae). Exp Parasitol 130:341

    Google Scholar 

  387. Murakami N, Sugimoto M, Kawanishi M, Tamura S, Kim H-S, Begum K, Wataya Y, Kobayashi M (2003) New semisynthetic quassinoids with in vivo antimalarial activity. J Med Chem 46:638

    Article  CAS  PubMed  Google Scholar 

  388. Murakami N, Umezome T, Mahmud T, Sugimoto M, Kobayashi M, Wataya Y, Kim H-S (1998) Anti-malarial activities of acylated bruceolide derivatives. Bioorg Med Chem Lett 8:459

    Article  CAS  PubMed  Google Scholar 

  389. Lopatriello A, Sore H, Habluetzel A, Parapini S, D’Alessandro S, Taramelli D, Taglialatela-Scafati O (2019) Identification of a potent and selective gametocytocidal antimalarial agent from the stem barks of Lophira lanceolata. Bioorg Chem 93:103321

    Google Scholar 

  390. Chen M, Christensen SB, Blom J, Lemmich E, Nadelmann L, Fich K, Theander TG, Kharazmi A (1993) Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob Agents Chemother 37:2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Chen M, Theander TG, Christenen SB, Hviid L, Zhai I, Kharazmi A (1994) Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother 38:1470

    Google Scholar 

  392. Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Nonaka K, Masuma R, Otoguro K, Shiomi K, Omura S (2011) In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A–C, produced by Penicillium sp. FKI-4410. J Antibiot 64:183

    Google Scholar 

  393. Saito R, Sennari G, Nakajima A, Kimishima A, Iwatsuki M, Ishiyama A, Hokari R, Hirose T, Sunazuka T (2021) Discoveries and syntheses of highly potent antimalarial troponoids. Chem Pharm Bull 69:564

    Article  CAS  Google Scholar 

  394. Harel D, Khalid SA, Kaiser M, Brun R, Wünsch B, Schmidt TJ (2011) Encecalol angelate, an unstable chromene from Ageratum conyzoides L.: Total synthesis and investigation of its antiprotozoal activity. J Ethnopharmacol 137:620

    Google Scholar 

  395. Harel D, Schepmann D, Prinz H, Brun R, Schmidt TJ, Wünsch B (2013) Enantioselective synthesis of encecaline-derived potent antimalarial agents. Org Biomol Chem 11:7342

    Article  CAS  PubMed  Google Scholar 

  396. Harel D, Schepmann D, Prinz H, Brun R, Schmidt TJ, Wünsch B (2013) Natural product derived antiprotozoal agents: Synthesis, biological evaluation and structure-activity relationships of novel chromene and chromane derivatives. J Med Chem 56:7442

    Article  CAS  PubMed  Google Scholar 

  397. Uth JF, Borgel F, Lehmkuhl K, Schepmann D, Kaiser M, Jabor VAP, Nonato MC, Krauth-Siegel RL, Schmidt TJ, Wunsch B (2021) Synthesis and biological evaluation of natural-product-inspired, aminoalkyl-substituted 1-benzopyrans as novel antiplasmodial agents. J Med Chem 64:6397

    Article  CAS  PubMed  Google Scholar 

  398. Kornsakulkarn J, Thongpanchang C, Chainoy R, Choowong W, Nithithanasilp S Thongpanchang T (2010) Bioactive metabolites from cultures of Basidiomycete Favolaschia tonkinensis. J Nat Prod 73:759

    Google Scholar 

  399. Kornsakulkarn J, Palasarn S, Choowong W, Thongpanchang T, Boonyuen N, Choeyklin R, Boonpratuang T, Isaka M, Thongpanchang C (2020) Antimalarial 9-methoxystrobilurins, oudemansins, and related polyketides from cultures of Basidiomycete Favolaschia species. J Nat Prod 83:905

    Article  CAS  PubMed  Google Scholar 

  400. Konziase B (2015) Protective activity of biflavanones from Garcinia kola against Plasmodium infection. J Ethnopharmacol 172:214

    Article  CAS  PubMed  Google Scholar 

  401. Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F Olusegun A (2014) Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac J Trop Med 7:97

    Google Scholar 

  402. Gachet MS, Kunert O, Kaiser M, Brun R, Muñoz RA, Bauer R, Schühly W (2010) Jacaranone-derived glucosidic esters from Jacaranda glabra and their activity against Plasmodium falciparum. J Nat Prod 73:553

    Article  CAS  PubMed  Google Scholar 

  403. Xu L, He Z, Xue J, Chen X, Wei XJ (2010) β-Resorcylic acid lactones from a Paecilomyces fungus. J Nat Prod 73:885

    Article  CAS  PubMed  Google Scholar 

  404. Su Q, Dalal S, Goetz M, Cassera MB, Kingston DGI (2016) Antiplasmodial phloroglucinol derivatives from Syncarpia glomulifera. Bioorg Med Chem 24:2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Harinantenaina L, Bowman JD, Brodie PJ, Slebodnick C, Callmander MW, Rakotobe E, Randrianaivo R, Rasamison VE, Gorka A, Roepe PD, Cassera MB, Kingston DG (2013) Antiproliferative and antiplasmodial dimeric phloroglucinols from Mallotus oppositifolius from the Madagascar dry forest. J Nat Prod 76:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Eaton AL, Dalal S, Cassera MB, Zhao S, Kingston DG (2016) Synthesis and antimalarial activity of mallatojaponin C and related compounds. J Nat Prod 79:1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Elbel KM, Guizzunti G, Theodoraki MA, Xu J, Batova A, Dakanali M Theodorakis EA (2013) A-ring oxygenation modulates the chemistry and bioactivity of caged Garcinia xanthones. Org Biomol Chem 11:3341

    Google Scholar 

  408. Ke H, Morrisey JM, Qu S, Chantarasriwong O, Mather MW, Theodorakis EA, Vaidya AB (2017) Caged Garcinia xanthones, a novel chemical scaffold with potent antimalarial activity. Antimicrob Agents Chemother 61:e01220-e1316

    Article  CAS  PubMed  Google Scholar 

  409. Dai Y, Harinantenaina L, Bowman JD, Da Fonseca IO, Brodie PJ, Goetz M, Cassera MB, Kingston DGI (2014) Isolation of antiplasmodial anthraquinones from Kniphofia ensifolia, and synthesis and structure-activity relationships of related compounds. Bioorg Med Chem 22:269

    Article  CAS  PubMed  Google Scholar 

  410. Bringmann G, Mutanyatta-Comar J, Maksimenka K, Wanjohi JM, Heydenreich M, Brun R, Muller WEG, Peter MG, Midiwo JO, Yenesew A (2008) Joziknipholones A and B: the frst dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chem Eur J 14:1420

    Article  CAS  PubMed  Google Scholar 

  411. Supong K, Thawai C, Suwanborirux K, Choowong W, Supothina S, Pittayakhajonwut P (2012) Antimalarial and antitubercular C-glycosylated benz[α]anthraquinones from the marine-derived Streptomyces sp. BCC45596. Phytochem Lett 5:651

    Google Scholar 

  412. Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y (2000) Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem 275:34353

    Article  CAS  PubMed  Google Scholar 

  413. Marchesini N, Vieira M, Luo S, Moreno SNJ, Docampo R (2005) A malaria parasite-encoded vacuolar H+-ATPase is targeted to the host erythrocyte. J Biol Chem 280:36841

    Article  CAS  PubMed  Google Scholar 

  414. Shao CL, Linington RG, Balunas MJ, Centeno A, Boudreau P, Zhang C, Engene N, Spadafora C, Mutka TS, Kyle DE, Gerwick L, Wang, CY Gerwick WH (2015) Bastimolide A, a potent antimalarial polyhydroxy macrolide from the marine cyanobacterium Okeania hirsuta. J Org Chem 80:7849

    Google Scholar 

  415. Kinashi H, Someno K, Sakaguchi K (1984) Isolation and characterization of concanamycins A, B and C. J Antibiot 37:1333

    Article  CAS  Google Scholar 

  416. Auparakkitanon S, Wilairat P (2006) Antimalarial activity of concanamycin A alone and in combination with pyronaridine. SE Asian J Trop Med Public Health 37:619

    CAS  Google Scholar 

  417. Hall TJ (1994) Cytotoxicity of vacuolar H+-ATPase inhibitors to UMR-106 rat osteoblasts: an effect on iron uptake into cells? Cell Biol Internat 18:189

    Article  CAS  Google Scholar 

  418. Ueda H, Nakajima H, Hori Y, Fujita T, Nishimura M, Goto T, Okuhara M (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot 47:301

    Google Scholar 

  419. Engel JA, Jones AJ, Avery VM, Sumanadasa SDM, Ng SS, Fairlie DP, Adams TS, Andrews KT (2015) Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitol Drugs Drug Resist 5:117

    Article  PubMed  PubMed Central  Google Scholar 

  420. Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng YQ, Bosch J, Townsend CA Dimopoulos G (2018) Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci Rep 8:6176

    Google Scholar 

  421. Annang F, Perez-Moreno G, Gonzalez-Menendez V, Lacret R, Perez-Victoria I, Martin J, Cantizani J, de Pedro N, Choquesillo-Lazarte D, Ruiz-Perez LM, Gonzalez-Pacanowska D, Genilloud O, Vicente F, Reyes F (2020) Strasseriolides A–D, a family of antiplasmodial macrolides isolated from the fungus Strasseria geniculata CF-247251. Org Lett 22:6709

    Article  CAS  PubMed  Google Scholar 

  422. Lane A, Stout EP, Lin AS, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Hay ME, Aalbersberg W, Kubanek J (2009) Antimalarial bromophycolides J−Q from the Fijian red alga Callophycus serratus. J Org Chem 74:2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Stout EP, Cervantes S, Prudhomme J, France S, La Clair JJ, Le Roch K, Kubanek J (2011) Bromophycolide A targets heme crystallization in the human malaria parasite Plasmodium falciparum. ChemMedChem 6:1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Nam SJ, Kauffman CA, Jensen PR, Fenical W (2011) Isolation and characterization of actinoramides A–C, highly modified peptides from a marine Streptomyces sp. Tetrahedron 67:6707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Williams DE, Dalisay DS, Patrick BO, Matainaho T, Andrusiak K, Deshpande R, Myers CL, Piotrowski JS, Boone C, Yoshida M, Andersen RJ (2011) Padanamides A and B, highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment. Org Lett 13:3936

    Google Scholar 

  426. Cheng KC, Cao S, Raveh A, MacArthur R, Dranchak P, Chlipala G, Okoneski MT, Guha R, Eastman RT, Yuan J, Schultz PJ, Su XZ, Tamayo-Castillo G, Matainaho T, Clardy J, Sherman DH, Inglese J (2015) Actinoramide A identified as a potent antimalarial from titration-based screening of marine natural product extracts. J Nat Prod 78:2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Portmann C, Blom JF, Gademann K, Jüttner F (2008) Aerucyclamides A and B: isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 71:1193

    Article  CAS  PubMed  Google Scholar 

  428. Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K (2008) Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J Nat Prod 71:1891

    Article  CAS  PubMed  Google Scholar 

  429. Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrián F, Matzen JT, Anderson P, Nam T-G, Gray NS, Chatterjee A, Janes J, Yan SF, Trager R, Caldwell JS, Schultz PG, Zhou Y, Winzeler EA (2008) In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci USA 105:9059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Renner MK, Shen Y-C, Cheng X-C, Jensen PR, Frankmoelle W, Kauffman CA, Fenical W, Lobkovsky E, Clardy J (1999) Cyclomarins A–C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273

    Google Scholar 

  431. Bürstner N, Roggo S, Ostermann N, Blank J, Delmas C, Freuler F, Gerhartz B, Hinniger A, Hoepfner D, Liechty B, Mihalic M, Murphy J, Pistorius D, Rottmann M, Thomas JR, Schirle M, Schmitt EK (2015) Gift from nature: cyclomarin A kills mycobacteria and malaria parasites by distinct modes of action. ChemBioChem 16:2433

    Article  PubMed  CAS  Google Scholar 

  432. Keller-Schierlein W, Mihailovic ML, Prelog V (1959) Metabolic products of Actinomycetes. XV. The structure of echinomycin. Helv Chim Acta 42:305

    Google Scholar 

  433. Waring MJ, Wakelin MPG (1974) Echinomycin: a bifunctional intercalating antibiotic. Nature 252:653

    Article  CAS  PubMed  Google Scholar 

  434. Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183

    Google Scholar 

  435. Taliaferro LG, Coulston F, Silverman M (1944) The antimalarial activity of tyrothricin against Plasmodium gallinaceum. J Infect Dis 75:179

    Article  CAS  Google Scholar 

  436. Rautenbach M, Vlok NM, Stander M, Hoppe HC (2007) Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis. Biochim Biophys Acta 1768:1488

    Article  CAS  PubMed  Google Scholar 

  437. van Epps HL (2006) René Dubos: unearthing antibiotics. J Exp Med 203:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  438. Gumila C, Ancelin J-M, Miquel G, Jeminet G, Delort A-M, Vial H (1996) Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells. Antimicrob Agents Chemother 40:602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. David JM, Rajasekaran AK (2015) Gramicidin A: a new mission for an old antibiotic. J Kidney Cancer VHL 2:15

    Article  PubMed  PubMed Central  Google Scholar 

  440. Gumila C, Ancelin ML, Delort AM, Jeminet G, Vial HJ (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob Agents Chemother 41:523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Yuan J, Cheng KC-C, Johnson RL, Huang R, Pattaradilokrat S, Liu A, Guha R, Fidock DA, Inglese J, Wellems TE, Austin CP, Su X-Z (2011) Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. Science 333:724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Sweeney-Jones AM, Gagaring K, Antonova-Koch J, Zhou H, Mojib N, Soapi K, Skolnick J, McNamara CW, Kubanek J (2020) Antimalarial peptide and polyketide natural products from the Fijian marine cyanobacterium Moorea producens. Mar Drugs 18:167

    Article  CAS  PubMed Central  Google Scholar 

  443. Ciufolini MA, Lefranc D (2010) Micrococcin P1: structure, biology and synthesis. Nat Prod Rep 27:330

    Article  CAS  PubMed  Google Scholar 

  444. Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Degiacomi G, Personne Y, Mondesert G, Ge X, Mandava CS, Hartkoorn RC, Boldrin F, Goel P, Peisker K, Benjak A, Barrio MB, Ventura M, Brown AC, Leblanc V, Bauer A, Sanyal S, Cole ST, Lagrange S, Parish T, Manganelli R (2016) Micrococcin P1—a bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis (Edinb) 100:95

    Article  CAS  Google Scholar 

  446. D’Alessandro S, Corbett Y, Ilboudo DP, Misiano P, Dahiya N, Abay SM, Habluetzel A, Grande R, Gismondo MR, Dechering KJ, Koolen KM, Sauerwein RW, Taramelli D, Basilico N, Parapini S (2015) Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 59:5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Adovelande J, Schreve J (1996) Carboxylic ionophores in malaria chemotherapy: The effects of monensin and nigericin on Plasmodium falciparum in vitro and Plasmodium vinckei petteri in vivo. Life Sci 59:309

    Article  Google Scholar 

  448. Scott PM, Van Walbeek W, MacLean WM (1971) Cladosporin, a new antifungal metabolite from Cladosporium cladosporioides. J Antibiot 24:747

    Article  CAS  Google Scholar 

  449. Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R, Aust T, McCormack SL, Plouffe DM, Meister S, Schuierer S, Plikat U, Hartmann N, Staedtler F, Cotesta S, Schmitt EK, Petersen F, Supek F, Glynne RJ, Tallarico JA, Porter JA, Fishman MC, Bodenreider C, Diagana TT, Movva NR, Winzeler EA (2012) Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 11:654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Zhou J, Zheng L, Hei Z, Li W, Wang J, Yu B, Fang P (2020) Atomic resolution analyses of isocoumarin derivatives for inhibition of lysyl-tRNA synthetase. ACS Chem Biol 15:1016

    Article  CAS  PubMed  Google Scholar 

  451. Schulze CJ, Navarro G, Ebert D, DeRisi J, Linington RG (2015) Salinipostins A–K, long-chain bicyclic phosphotriesters as a potent and selective antimalarial chemotype. J Org Chem 80:1312

    Article  CAS  PubMed  Google Scholar 

  452. Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Gnadig NF, Zhou Y, Kurita K, Foe IT, Terrell SM, Boucher MJ, Cieplak P, Kumpornsin K, Lee MCS, Linington RG, Long JZ, Uhlemann A-C, Weerapana E, Fidock DA, Bogyo M (2020) The antimalarial natural product salinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P. falciparum parasites. Cell Chem Biol 27:143

    Google Scholar 

  453. Zhang P, Nicholson DE, Bujnicki JM, Su X, Brendle JJ, Ferdig M, Kyle DE, Milhous WK, Chiang PK (2002) Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for malaria and leishmaniasis J Biomed Sci 9:34

    Google Scholar 

  454. Chen X, Xie S, Bhat S, Kumar N, Shapiro TA, Liu JO (2009) Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chem Biol 16:193

    Google Scholar 

  455. Mills B, Isaac RE, Foster R (2021) Metalloaminopeptidases of the protozoan parasite Plasmodium falciparum as targets for the discovery of novel antimalarial drugs. J Med Chem 64:1763

    Article  CAS  PubMed  Google Scholar 

  456. Fattorusso C, Campiani G, Catalanotti B, Persico M, Basilico N, Parapini S, Taramelli D, Campagnuolo C, Fattorusso E, Romano A, Taglialatela-Scafati O (2006) Endoperoxide derivatives from marine organisms: 1,2-dioxanes of the plakortin family as novel antimalaraial agents. J Med Chem 49:7088

    Article  CAS  PubMed  Google Scholar 

  457. Jimenez-Romero C, Ortiz I, Vicente J, Vera B, Rodrıguez AD, Nam S, Jove R (2010) Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J Nat Prod 73:1694

    Google Scholar 

  458. Chianese G, Persico M, Yang F, Lin HW, Guo YW, Basilico N, Parapini S, Taramelli D, Taglialatela-Scafati O, Fattorusso C (2014) Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes. Bioorg Med Chem 22:4572

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. I. Kingston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kingston, D.G.I., Cassera, M.B. (2022). Antimalarial Natural Products. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Antimalarial Natural Products. Progress in the Chemistry of Organic Natural Products, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-89873-1_1

Download citation

Publish with us

Policies and ethics