Skip to main content
Log in

Study on the antifungal activity and mechanism of tea saponin from Camellia oleifera cake

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to isolate tea saponin from defatted C. oleifera cake and explore its potential antifungal activity and mechanism. UHPLC–MS/MS identified the compounds, and the antibacterial activity of tea saponin was determined by the inhibition zone method and double dilution method. In addition, the influence of tea saponin on the cell membrane, hyphae, and biofilm was studied to explore the antifungal mechanism of tea saponin. The results showed that the purity of tea saponin was 90.61%, and the main components of C. oleifera saponins were oleiferasaponin D3. Tea saponin has an apparent inhibitory effect on fungus. The minimum inhibitory concentrations (MIC) of the tea saponin against C. albicans, S. cerevisiae, and Penicillium were 0.078, 0.156, and 0.156 mg/mL, while the minimum fungicidal concentrations (MFC) were 0.312, 0.625, and 0.625 mg/mL, respectively. Tea saponin could destroy the cell membrane structure, which led to the leakage of cell contents and inhibited the growth of mycelium, reduced cell adhesion and aggregation, and effectively inhibited the formation of biofilm of C. albicans. Transcriptomic analyses indicated that tea saponin could down-regulate the expression of several hyphae- and biofilm-related genes (ALS3, ECE1, HWP1, EFG1, and UME6). This study confirmed that tea saponin from C. oleifera cake can be used as an effective source of natural antifungal agents and provide guidance on their utilization in the field of food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

C. oleifera :

Camellia oleifera Abel

C. albicans :

Candida albicans

S. cerevisiae :

Saccharomyces cerevisiae

AO/EB:

Acridine orange/ethidium bromide

SEM:

Scanning electron microscope

MIC:

Minimum inhibitory concentrations

MFC:

Minimum fungicidal concentrations

UHPLC–MS/MS:

Ultrahigh pressure liquid chromatography–high-resolution mass spectrometer

References

  1. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P (2020) Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112350

    Article  Google Scholar 

  2. Riesute R, Salomskiene J, Moreno DS, Gustiene S (2021) Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends Food Sci Technol 108:1–10. https://doi.org/10.1016/j.tifs.2020.11.022

    Article  CAS  Google Scholar 

  3. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16(9):603–616. https://doi.org/10.1038/nrd.2017.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papoutsis K, Mathioudakis MM, Hasperué JH, Ziogas V (2019) Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci Technol 86:479–491. https://doi.org/10.1016/j.tifs.2019.02.053

    Article  CAS  Google Scholar 

  5. Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, Samaranayake L, Neelakantan P (2021) A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf B Biointerfaces 200:111617. https://doi.org/10.1016/j.colsurfb.2021.111617

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Wang Z, Liu L, Qu S, Mao Y, Peng X, Li YX, Tian J (2019) Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Appl Microbiol Biotechnol 103(21–22):9037–9055. https://doi.org/10.1007/s00253-019-10119-3

    Article  CAS  PubMed  Google Scholar 

  7. Kadosh D (2019) Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 52:27–34. https://doi.org/10.1016/j.mib.2019.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74(4):ftw018. https://doi.org/10.1093/femspd/ftw018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P (2019) Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol 52:1–6. https://doi.org/10.1016/j.mib.2019.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pisoschi AM, Pop A, Georgescu C, Turcus V, Olah NK, Mathe E (2018) An overview of natural antimicrobials role in food. Eur J Med Chem 143:922–935. https://doi.org/10.1016/j.ejmech.2017.11.095

    Article  CAS  PubMed  Google Scholar 

  11. El-Saber Batiha G, Hussein DE, Algammal AM, George TT, Jeandet P, Al-Snafi AE, Tiwari A, Pagnossa JP, Lima CM, Thorat ND, Zahoor M, El-Esawi M, Dey A, Alghamdi S, Hetta HF, Cruz-Martins N (2021) Application of natural antimicrobials in food preservation: recent views. Food Control. https://doi.org/10.1016/j.foodcont.2021.108066

    Article  Google Scholar 

  12. Liang H, Hao B-Q, Chen G-C, Ye H, Ma J (2017) Camellia as an oilseed crop. HortScience 52(4):488–497. https://doi.org/10.21273/hortsci11570-16

    Article  Google Scholar 

  13. Zong J, Wang R, Bao G, Ling T, Zhang L, Zhang X, Hou R (2015) Novel triterpenoid saponins from residual seed cake of Camellia oleifera Abel. show anti-proliferative activity against tumor cells. Fitoterapia 104:7–13. https://doi.org/10.1016/j.fitote.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Gao C, Cai C, Liu J, Wang Y, Chen Y, Wang L, Tan Z (2020) Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chem 313:126164. https://doi.org/10.1016/j.foodchem.2020.126164

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Zheng L, Zheng X, Ai B, Yang Y, Pan Y, Sheng Z (2019) Effect of steam explosion treatments on the functional properties and structure of camellia (Camellia oleifera Abel.) seed cake protein. Food Hydrocolloids 93:189–197. https://doi.org/10.1016/j.foodhyd.2019.02.017

    Article  CAS  Google Scholar 

  16. Hong C, Chang C, Zhang H, Jin Q, Wu G, Wang X (2019) Identification and characterization of polyphenols in different varieties of Camellia oleifera seed cakes by UPLC-QTOF-MS. Food Res Int 126:108614. https://doi.org/10.1016/j.foodres.2019.108614

    Article  CAS  PubMed  Google Scholar 

  17. Kuo PC, Lin TC, Yang CW, Lin CL, Chen GF, Huang JW (2010) Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J Agric Food Chem 58(15):8618–8622. https://doi.org/10.1021/jf1017115

    Article  CAS  PubMed  Google Scholar 

  18. Yang WS, Ko J, Kim E, Kim JH, Park JG, Sung NY, Kim HG, Yang S, Rho HS, Hong YD, Shin SS, Cho JY (2014) 21-O-angeloyltheasapogenol E3, a novel triterpenoid saponin from the seeds of tea plants, inhibits macrophage-mediated inflammatory responses in a NF-kappaB-dependent manner. Mediators Inflamm 2014:658351. https://doi.org/10.1155/2014/658351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia LY, Wu XJ, Gao Y, Rankin GO, Pigliacampi A, Bucur H, Li B, Tu YY, Chen YC (2017) Inhibitory effects of total triterpenoid saponins isolated from the seeds of the tea plant (Camellia sinensis) on human ovarian cancer cells. Molecules. https://doi.org/10.3390/molecules22101649

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim JD, Khan MI, Shin JH, Lee MG, Seo HJ, Shin TS, Kim MY (2016) HPLC fractionation and pharmacological assessment of green tea seed saponins for antimicrobial, anti-angiogenic and hemolytic activities. Biotechnol Bioprocess Eng 20(6):1035–1043. https://doi.org/10.1007/s12257-015-0538-6

    Article  CAS  Google Scholar 

  21. Hu JL, Nie SP, Huang DF, Li C, Xie MY, Wan Y (2012) Antimicrobial activity of saponin-rich fraction from Camellia oleifera cake and its effect on cell viability of mouse macrophage RAW 264.7. J Sci Food Agric 92(12):2443–2449. https://doi.org/10.1002/jsfa.5650

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XF, Yang SL, Han YY, Zhao L, Lu GL, Xia T, Gao LP (2014) Qualitative and quantitative analysis of triterpene saponins from tea seed pomace (Camellia oleifera Abel) and their activities against bacteria and fungi. Molecules 19(6):7568–7580. https://doi.org/10.3390/molecules19067568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang Y, He X, Sun J, Liu G, Li C, Li L, Sheng J, Zhou Z, Xin M, Ling D, Yi P, Zheng F, Li J, Li Z, Yang Y, Tang J, Chen X (2021) Comprehensive evaluation on tailor-made deep eutectic solvents (DESs) in extracting tea saponins from seed pomace of Camellia oleifera Abel. Food Chem 342:128243. https://doi.org/10.1016/j.foodchem.2020.128243

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Su R, Zhang W, Yao G-L, Chen J (2020) Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112604

    Article  Google Scholar 

  25. Cai R, Hu M, Zhang Y, Niu C, Yue T, Yuan Y, Wang Z (2019) Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. Lwt 106:50–56. https://doi.org/10.1016/j.lwt.2019.02.059

    Article  CAS  Google Scholar 

  26. Liang Z, Qi Y, Guo S, Hao K, Zhao M, Guo N (2019) Effect of AgWPA nanoparticles on the inhibition of Staphylococcus aureus growth in biofilms. Food Control 100:240–246. https://doi.org/10.1016/j.foodcont.2019.01.030

    Article  CAS  Google Scholar 

  27. Yang L, Liu X, Zhong L, Sui Y, Quan G, Huang Y, Wang F, Ma T (2018) Dioscin inhibits virulence factors of Candida albicans. Biomed Res Int 2018:4651726. https://doi.org/10.1155/2018/4651726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Souza MR, Teixeira RC, Daude MM, Augusto ANL, Sagio SA, de Almeida AF, Barreto HG (2021) Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods 184:106200. https://doi.org/10.1016/j.mimet.2021.106200

    Article  CAS  PubMed  Google Scholar 

  29. Fu HZ, Wan KH, Yan QW, Zhou GP, Feng TT, Dai M, Zhong RJ (2018) Cytotoxic triterpenoid saponins from the defatted seeds of Camellia oleifera Abel. J Asian Nat Prod Res 20(5):412–422. https://doi.org/10.1080/10286020.2017.1343822

    Article  CAS  PubMed  Google Scholar 

  30. Joshi R, Sood S, Dogra P, Mahendru M, Kumar D, Bhangalia S, Pal HC, Kumar N, Bhushan S, Gulati A, Saxena AK, Gulati A (2012) In vitro cytotoxicity, antimicrobial, and metal-chelating activity of triterpene saponins from tea seed grown in Kangra valley, India. Med Chem Res 22(8):4030–4038. https://doi.org/10.1007/s00044-012-0404-4

    Article  CAS  Google Scholar 

  31. Lee JH, Kim YG, Khadke SK, Yamano A, Watanabe A, Lee J (2019) Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin via hyphal-growth suppression. ACS Infect Dis 5(7):1177–1187. https://doi.org/10.1021/acsinfecdis.9b00033

    Article  CAS  PubMed  Google Scholar 

  32. Hu Q, Chen YY, Jiao QY, Khan A, Li F, Han DF, Cao GD, Lou HX (2018) Triterpenoid saponins from the pulp of Sapindus mukorossi and their antifungal activities. Phytochemistry 147:1–8. https://doi.org/10.1016/j.phytochem.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  33. Shinobu-Mesquita CS, Bonfim-Mendonca PS, Moreira AL, Ferreira IC, Donatti L, Fiorini A, Svidzinski TI (2015) Cellular structural changes in Candida albicans caused by the hydroalcoholic extract from Sapindus saponaria L. Molecules 20(5):9405–9418. https://doi.org/10.3390/molecules20059405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bi Z, Zhao Y, Morrell JJ, Lei Y, Yan L (2021) The antifungal mechanism of konjac flying powder extract and its active compounds against wood decay fungi. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113406

    Article  Google Scholar 

  35. Cho J, Choi H, Lee J, Kim MS, Sohn HY, Lee DG (2013) The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta 3:1153–1158. https://doi.org/10.1016/j.bbamem.2012.12.010

    Article  CAS  Google Scholar 

  36. Alcazar-Fuoli L, Mellado E (2014) Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 166(4):471–484. https://doi.org/10.1111/bjh.12896

    Article  PubMed  Google Scholar 

  37. Sadowska B, Budzynska A, Wieckowska-Szakiel M, Paszkiewicz M, Stochmal A, Moniuszko-Szajwaj B, Kowalczyk M, Rozalska B (2014) New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. J Med Microbiol 63(Pt 8):1076–1086. https://doi.org/10.1099/jmm.0.075291-0

    Article  PubMed  Google Scholar 

  38. Budzynska A, Sadowska B, Wieckowska-Szakiel M, Micota B, Stochmal A, Jedrejek D, Pecio L, Rozalska B (2014) Saponins of Trifolium spp. aerial parts as modulators of Candida albicans virulence attributes. Molecules 19(7):10601–10617. https://doi.org/10.3390/molecules190710601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banti CN, Raptopoulou CP, Psycharis V, Hadjikakou SK (2021) Novel silver glycinate conjugate with 3D polymeric intermolecular self-assembly architecture; an antiproliferative agent which induces apoptosis on human breast cancer cells. J Inorg Biochem 216:111351. https://doi.org/10.1016/j.jinorgbio.2020.111351

    Article  CAS  PubMed  Google Scholar 

  40. Orsi CF, Borghi E, Colombari B, Neglia RG, Quaglino D, Ardizzoni A, Morace G, Blasi E (2014) Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells. Microb Pathog 69–70:20–27. https://doi.org/10.1016/j.micpath.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18(14):1017–1024. https://doi.org/10.1016/j.cub.2008.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2(7):e63. https://doi.org/10.1371/journal.ppat.0020063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5(3):e64. https://doi.org/10.1371/journal.pbio.0050064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, Lopez-Ribot JL, Kadosh D (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19(4):1354–1365. https://doi.org/10.1091/mbc.E07-11-1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lassak T, Schneider E, Bussmann M, Kurtz D, Manak JR, Srikantha T, Soll DR, Ernst JF (2011) Target specificity of the Candida albicans Efg1 regulator. Mol Microbiol 82(3):602–618. https://doi.org/10.1111/j.1365-2958.2011.07837.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Forestry Science and Technology Innovation Project of Guangdong Province (2017KJCX005).

Funding

This work was supported by the Forestry Science and Technology Innovation Project of Guangdong Province (2017KJCX005).

Author information

Authors and Affiliations

Authors

Contributions

ZY: writing—original draft, data curation, writing—review and editing, software. XW: conceptualization, formal analysis, methodology, resources, writing—review and editing, project administration, fund applicant. JH: investigation, instrumental analysis, data collection.

Corresponding author

Correspondence to Xuehui Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Wu, X. & He, J. Study on the antifungal activity and mechanism of tea saponin from Camellia oleifera cake. Eur Food Res Technol 248, 783–795 (2022). https://doi.org/10.1007/s00217-021-03929-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03929-1

Keywords

Navigation