Skip to main content

Ionic Liquids: The Smart Materials in Process Industry

  • Living reference work entry
  • First Online:
Handbook of Smart Materials, Technologies, and Devices
  • 40 Accesses

Abstract

It is mainly considered that the chemical process and allied industries are responsible for environmental pollution. It is true to some extent; hence it is the role of scientists and engineers to fulfill the social expectations by providing sustainable design and development of chemical processes so that there must be less generation of hazardous materials and hence less negative impact on environment. Ionic Liquids (ILs) and IL-based materials are the promising alternative to conventional and traditional materials. ILs and IL-based materials have been emerged as smart materials in process industry because of many unique properties of ionic liquids such as almost zero vapor pressure, non-flammability, and tunable physiochemical properties for a particular application. The basic properties which can be tuned for specific applications are thermal phase behavior, thermal stability, viscosity, conductivity, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akama Y, Sali A (2002) Extraction mechanism of Cr (VI) on the aqueous two-phase system of tetrabutylammonium bromide and (NH(4))(2)SO(4) mixture. Talanta 57:681–686

    Article  Google Scholar 

  • Amarasekara AS (2016) Acidic ionic liquids. Chem Rev 116:6133–6183

    Article  Google Scholar 

  • Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2, CH4, C2H6, C2H4, O2 and N2 in hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide comparison to other ionic liquids. Acc Chem Res 40(11):1208–1216

    Article  Google Scholar 

  • Andreani L, Rocha JD (2012) Use of ionic liquids in biodiesel production: a review. Braz J Chem Eng 29(1):1–13

    Article  Google Scholar 

  • Angell CA, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27

    Article  Google Scholar 

  • Arce A, Earle M, Rodriguez H, Seddon K (2007) Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl}amide. Green Chem 1:70–74

    Article  Google Scholar 

  • Baczyn’ska M, SÅ‚omka Z, Rzelewska M, Waszak M, Nowicki M, Regel-Rosocka M (2018) Characterization of polymer inclusion membranes (PIM) containing phosphonium ionic liquids and their application for separation of Zn(II) from Fe(III). J Chem Technol Biotechnol 93(6):1767–1777

    Google Scholar 

  • Berthod A, Ruiz-A’ngel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    Article  Google Scholar 

  • Berton P, Monasterio RP, Wuilloud RG (2012) Selective extraction and determination of vitamin B12 in urine by ionic liquid-based aqueous two-phase system prior to high-performance liquid chromatography. Talanta 97:521–526

    Article  Google Scholar 

  • Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  • Bo¨smann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P (2001) Chem Commun 23:2494

    Google Scholar 

  • Brunel F, Lautard C, di Giorgio C, Garzino F, Raimundo J-M, Bolla J-M, Camplo M (2018) Antibacterial activities of mono-, di- and tri-substituted triphenylamine-based phosphonium ionic liquids. Bioorg Med Chem Lett 28(5):926–929

    Google Scholar 

  • Caparica R, Júlio A, Mota JP, Rosado C, Almeida de TS (2018) Applicability of ionic liquids in topical drug delivery systems: a mini review. J Pharm Clin Res 4(5) JPCR.MS.ID. 555649

    Google Scholar 

  • Carroll M (2015) Living among giants: exploring and settling the outer solar system, 1st edn. Springer, Littleton

    Google Scholar 

  • Chitta KR, Van Meter DS, Stalcup AM (2010) Separation of peptides by HPLC using a surface-confined ionic liquid stationary phase. Anal Bioanal Chem 396:775–781

    Article  Google Scholar 

  • Cieszynska A, Wisniewski M (2010) Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant. Sep Purif Technol 73(2):202–207

    Google Scholar 

  • Cui G, Wang J, Zhang S (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339

    Article  Google Scholar 

  • Dharaskar S, Sillanpaa M, Wasewar K, Walvekar R (2019) Feasibility study of phosphonium ionic liquids as efficient solvent for sulfur extraction from liquid fuels. Am Inst Phys (AIP) Conf Proc 2137(1)

    Google Scholar 

  • Dharaskar SA, Wasewar KL, Varma MN, Shende DZ (2013) Extractive deep desulfurization of liquid fuels using Lewis-based ionic liquids. J Energy:1–4

    Google Scholar 

  • Dharaskar SA, Wasewar KL, Varma MN, Shende DZ, Yoo CK (2014) Extractive desulfurization of liquid fuels by energy efficient green Thiazolium based ionic liquids. Ind Eng Chem Res 53(51):19845–19854

    Article  Google Scholar 

  • Dharaskar SA, Wasewar KL, Varma MN, Shende DZ (2015) Imidazolium ionic liquid as energy efficient solvent for desulfurization of liquid fuel. Sep Purif Technol 155:101–109

    Article  Google Scholar 

  • Dreyer S, Salim P, Kragl U (2009) Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem Eng J 46:176–185

    Article  Google Scholar 

  • Dyson PJ, Ellis DJ, Henderson W, Laurenczy G (2003) A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Adv Synth Catal 345:216–221

    Article  Google Scholar 

  • Dyson PJ, Ellis DJ, Welton T, Parker DG (1999) Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem Commun 1999:25–26

    Article  Google Scholar 

  • EURARE. www.eurare.eu/technologies/ionicLiquidExtraction.html. Referred on 27 October 2020

  • Flieger J, Czajkowska-Zelazko A (2015) Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample. Food Chem 166:150–157

    Article  Google Scholar 

  • Freire MG, Neves CMSS, Marrucho IM, Lopes JNC, Rebelob LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two- phase systems with ionic liquids. Green Chem 12:1715–1718

    Article  Google Scholar 

  • Goindi S, Kaur R, Kaur R (2015) An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. Int J Pharm 495. Elsevier B.V

    Google Scholar 

  • Ha SH, Lan MN, Lee SH, Hwang SM, Koo Y-M (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzym Microb Technol 41(4):480–483

    Article  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111(2):3508–3576

    Google Scholar 

  • Han J, Wang Y, Kang WB, Li CX, Yan XS, Pan JM et al (2010) Phase equilibrium and macrolide antibiotics partitioning in real water samples using a two-phase system composed of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and an aqueous solution of an inorganic salt. Microchim Acta 169:15–22

    Article  Google Scholar 

  • He C, Li S, Liu H, Li K, Liu F (2005) Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr A 1082:143–149

    Google Scholar 

  • Huang YI, Yao S, Song H (2013) Application of ionic liquids in liquid chromatography and electrodriven separation. J Chromatogr Sci 51:739–752

    Article  Google Scholar 

  • Ibrahim MH, Hayyan M, Hashim MA, Hayyan A (2017) The role of ionic liquids in desulfurization of fuels: a review. 76:1534–1549

    Google Scholar 

  • Ilconich J, Myers C, Pennline H (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125OC. J Membr Sci 298(1–2):41–47. https://doi.org/10.1016/j.memsci.2007.03.056

  • Janardhan B, Vijaya Laxmi S, Rajitha B (2012) J Chem Pharm Res 4:519

    Google Scholar 

  • Kajdas C (1994) Importance of anionic reactive intermediates for lubricant component reactions with friction surfaces. Lubr Sci 6(3):203–228

    Google Scholar 

  • Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA (2020) Applications of phosphonium-based ionic liquids in chemical processes. J Iran Chem Soc 17:1775–1917

    Article  Google Scholar 

  • Kro’likowska M, Orawiec M (2016) Activity Coefficients at Infinite Dilution of Organic Solutes and Water in Tributylethylphosphonium Diethylphosphate Using Gas-Liquid Chromatography: Thermodynamic Properties of Mixtures Containing Ionic Liquids. J Chem Eng Data 61(5):1793–1802

    Google Scholar 

  • Liang L, Gan Q, Nancarrow P (2014) Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. J Membr Sci 450:407–417

    Article  Google Scholar 

  • Liang X, Gong G, Wu H, Yang J (2009) Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel 88(4):613–616

    Article  Google Scholar 

  • Liu X, Zhou F, Liang Y, Liu W (2006) Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261(110):1174–1179

    Google Scholar 

  • Lui Q, Xuesheng H, Wang Y, Yang P, Xia H, Yu J et al (2005) Extraction of penicillin G by aqueous two-phase system of [Bmim]BF4/NaH2PO4. Chin Sci Bull 50:1582–1585

    Article  Google Scholar 

  • Marques CFC, Mouraõ T, Neves CMSS, Lima A´S, Boal-Palheiros I, Coutinho JAP, Freire MG (2013) Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnol Prog 29(3):645–654

    Google Scholar 

  • Marta´k JSˇ, Schlosser S Vlcˇkova´ (2008) J Membr Sci 318:298

    Article  Google Scholar 

  • Meindersma G, Podt A, de Haan A (2006) Ternary liquid- liquid equilibria for mixtures of an aromatic + an aliphatic hydrocarbon + 4-methyl-N-butylpyridinium tetrafluoroborate. J Chem Eng Data 5:1814–1819

    Article  Google Scholar 

  • Moravcova’ D Planeta J, King AWT, Wiedmer SK (2018) Immobilization of a phosphonium ionic liquid on a silica monolith forhydrophilic interaction chromatography. J Chromatogr A 1552:53–59

    Google Scholar 

  • Nancarrow P, Mohammed H (2017) Ionic liquids in space technology – current and future trends. ChemBioEng Rev 4(2):2. 1–15

    Article  Google Scholar 

  • Nguyen TKL, Livi S, Pruvost S, Soares BG, Duchet-Rumeau J (2014) Ionic liquids as reactive additives for the preparation and modification of epoxy networks. J Polym Sci Part A Polym Chem 52(24):3463–3471

    Google Scholar 

  • Omar M (2016) A review of ionic liquids for advance in drug delivery: theory and pharmaceutical implementation. UK J Pharm Biosci 4(1):41–44

    Google Scholar 

  • Pacholec F, Poole CF (1983) Stationary phase properties of the organic molten salt ethylpyridinium bromide in gas chromatograph. Chromatographia 17:370–374

    Google Scholar 

  • Paul A, Muthukumar S, Prasad S (2020) Review—room-temperature ionic liquids for electrochemical application with special focus on gas sensors. J Electrochem Soc 167:037511

    Article  Google Scholar 

  • Pei Y, Wang J, Liu L, Wu K, Zhao Y (2007) Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J Chem Eng Data 5:2026–2031

    Article  Google Scholar 

  • Pei Y, Wang J, Wu K, Xuan X, Lu X (2009) Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol 64:288–295

    Article  Google Scholar 

  • Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  Google Scholar 

  • Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    Article  Google Scholar 

  • Qin W, Li SFY (2002) An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry. Electrophoresis 23(24):4110–4116

    Google Scholar 

  • Qin W, Li SFY (2003) Electrophoresis of DNA in ionic liquid coated capillary. Analyst 128:37–41

    Google Scholar 

  • Rádai Z, Kiss NZ, Keglevich G (2018) An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr Org Chem 22:533–556

    Article  Google Scholar 

  • Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177

    Article  Google Scholar 

  • Ren F, Wang J, Xie F, Zan K, Wang S, Wang S (2020) Applications of ionic liquids in starch chemistry: a review. Green Chem. https://doi.org/10.1039/C9GC03738A

  • Romanovsky BV, Tarkhanova IG (2017) Supported ionic liquids in catalysis. Russ Chem Rev 86(5):444–458

    Article  Google Scholar 

  • Santos De Almeida T, Júlio A, Saraiva N, Fernandes AS, Araújo MEM et al (2017) Choline- versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Drug Dev Ind Pharm 43(11):1858–1865

    Article  Google Scholar 

  • Schindl A, Hagen ML, Muzammal S, Gunasekera HAD, Croft AK (2019) Proteins in ionic liquids: reactions, applications, and futures. Front Chem 7:347

    Article  Google Scholar 

  • Scovazzo P, Kieft J, Finan DA (2004) Gas Separations Using Non-Hexafluorophosphate [PF6]- Anion Supported Ionic Liquid Membranes. J Membr Sci 238(1–2):57–63. https://doi.org/10.1016/j.memsci.2004.02.033

  • Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: an overview. J Mol Liq 297(112038):1–23

    Google Scholar 

  • Sprakel LMJ, Schuur B (2019) Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep Purif Technol 211:935–957

    Article  Google Scholar 

  • Sugden S, Wilkins H (1929) CLXVII.-the parachor and chemical constitution. Part XII. Fused metals and salts. J Chem Soc:1291–1298. https://doi.org/10.1039/JR9290001291

  • Vahdat SM, Zolfigol MA, Baghery S (2016) Straightforward Hantzsch four- and three-component condensation in the presence of triphenyl(propyl-3-sulfonyl)phosphoniumtrifluoromethanesulfonate {[TPPSP]OTf} as a reusable and green mild ionic liquid catalyst. Appl Organomet Chem 30(5):311–317

    Google Scholar 

  • Wang P, Yang L, Wu H, Cao Y, Zhang J, Xu N, Chen S, Decoppet J-D, Zakeeruddin SM, Grätzel M (2018) Stable and efficient organic dye-sensitized solar cell based on ionic liquid electrolyte. Joule 2(10):2145–2153

    Article  Google Scholar 

  • Wasewar KL (2012) Low sulfur liquid fuel by deep desulfurization using ionic liquids. J Future Eng Tech 8(1):1–5

    Google Scholar 

  • Wasewar KL (2013) Multistage extractive desulfurization of liquid fuel by ionic liquids. J Future Eng Tech 3(2):10–15

    Google Scholar 

  • Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706

    Article  Google Scholar 

  • Werner S, Haumann M, Wasserscheid W (2010) Ionic liquids in chemical engineering. Annu Rev Chem Biomol Eng 1:203–230

    Article  Google Scholar 

  • Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  Google Scholar 

  • Wu Q, Chen H, Han M, Wang D, Wang J (2007) Transesterification of cottonseed oil catalyzed by Bronsted acidic ionic liquids. Ind Eng Chem Res 46(24):7955–7960

    Article  Google Scholar 

  • Yang G, Song Y, Wang Q, Zhang L, Deng L (2020) Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Des 190(108563):1–9

    Google Scholar 

  • Yang Z-Z, Zhao Y-N, He L-N (2011) CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv 1:545–567

    Article  Google Scholar 

  • Yarie M, Zolfigol MA, Saeidi-Rad M (2018) Tributyl(3-sulfopropyl)phosphonium hydrogen sulfate (TBSPHS) as a novel task-specific phosphonium ionic liquid: A robust catalyst for the synthesis of 1,5-dihydro-2H-pyrrol-2-ones. J Mol Liq 249:144–152

    Google Scholar 

  • Zhang L, Chen J, Lv JX, Wang SF, Cui Y (2013) Progress and development of capture for CO2 by ionic liquids. Asian J Chem 25(5):2355–2358

    Article  Google Scholar 

  • Zhang Q, Shreeve JNM (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114:10527–10574

    Article  Google Scholar 

  • Zhua J, Bai L, Chena B, Fei W (2009) Thermodynamical properties of phase change materials based on ionic liquids. Chem Eng J 147(1):58–62. https://doi.org/10.1016/j.cej.2008.11.016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas L. Wasewar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wasewar, K.L. (2022). Ionic Liquids: The Smart Materials in Process Industry. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-58675-1_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58675-1_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58675-1

  • Online ISBN: 978-3-030-58675-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics