Skip to main content
Log in

Preparation and characterization of microcapsules loaded with polyphenols-enriched Uncaria tomentosa extract using spray-dryer technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work prepared and characterized microcapsule of Uncaria tomentosa (UT) in order to standardize a spray-dryer Uncaria tomentosa extract. The UT bark powder was subjected to extraction by maceration using hydro-ethanol solution. The Uncaria tomentosa extract was used to prepare the spray-dryer microcapsules UT-F1. The UT extract and microcapsules UT-F1 were submitted to chemical and physicochemical characterization tests. The phytochemical tests revealed the presence of alkaloids and phenolic compounds such as catechin. The UT extract and microcapsules UT-F1 showed high content of total phenols (28.48% ± 0.76 and 36.34% ± 0.22), high catechin content (47.95% ± 4.90 and 51.15% ± 4.20) and high antioxidant activity with IC50 values of 5.80 and 5.03 µg cm−3. The SEM, FTIR and TG analysis confirmed the morphology of spherical particles, the microencapsulation of the constituents of the UT extract, low moisture content, as well as stability of the microcapsules UT-F1. The DSC analysis and dissolution tests showed the technological influence of spray-dried starch combined UT extract considered water-poorly soluble resulting in vitro release (52.9%) of polyphenolic compounds from Uncaria tomentosa microcapsules. The combined use of disintegrants with a natural surfactant in the UT microcapsules has improved the release of polyphenols (catechin) from spray-dryer herbal composition reaching an equivalent release of 78.6% of catechin after 240 min. The in vitro release of microcapsules UT-F1 responds depending on the concentration of pharmaceutical excipients considered disintegrating and can easily achieve release greater than 80%. The microcapsules UT-F1 can be used as bulk material for herbal products in pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batiha GES, Beshbishy AM, Wasef L, Elewa YHA, El-Hack MEA, Taha AE, Al-Sagheer AA, Devkota HP, Tufarelli V. Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities. Appl Sci. 2020;10:2662. https://doi.org/10.3390/app10082668.

    Article  CAS  Google Scholar 

  2. Wanderley AB, Mousinho KC, Rocha TJM. Medicinal plants commercially available in public markets of AL-Maceió for verminosis treatment. J Med Health Promot. 2018;3:922–34.

    Google Scholar 

  3. Keplinger K, Laus G, Wurm M, Dierich MP, Teppner H. Uncaria tomentosa (Willd.) DC.—ethnomedicinal use and new pharmacological, toxicological and botanical results. J Ethnopharmacol. 1998;64:23–4. https://doi.org/10.1016/S0378-8741(98)00096-8.

    Article  Google Scholar 

  4. Aguilar JL, Rojas P, Marcelo A, Plaza A, Bauer R, Reininger E, Klaas CA, Merfort I. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J Ethnopharmacol. 2002;81:271–6. https://doi.org/10.1016/S0378-8741(02)00093-4.

    Article  PubMed  Google Scholar 

  5. Azevedo BC, Morel LJF, Carmona F, Cunha TM, Contini SHT, Delprete PG, Ramalho FS, Crevelin E, Bertoni BW, França SC, Borges MC, Pereira MAS. Aqueous extracts from Uncaria tomentosa (Willd. ex Schult.) DC. reduce bronchial hyperresponsiveness and inflammation in a murine model of asthma. J Ethnopharmacol. 2018;218:76–89. https://doi.org/10.1016/j.jep.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Zhao JJ, Xu J, Feng F, Qu W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J Ethnopharmacol. 2015;173:48–80. https://doi.org/10.1016/j.jep.2015.06.011.

    Article  CAS  PubMed  Google Scholar 

  7. Laus G. Advances in chemistry and bioactivity of the genus Uncaria. Phytother Res. 2004;18:259–74. https://doi.org/10.1002/ptr.1469.

    Article  CAS  PubMed  Google Scholar 

  8. Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry. 2005;66:5–29. https://doi.org/10.1016/j.phytochem.2004.10.022.

    Article  CAS  PubMed  Google Scholar 

  9. Sandoval M, Charbonnet RM, Okuhama NN, Roberts J, Krenova K, Trentacosti AM, Miller MJS. Cat’s claw inhibits TNFa production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med. 2000;29:71–8. https://doi.org/10.1016/S0891-5849(00)00327-0.

    Article  CAS  PubMed  Google Scholar 

  10. Sandoval-Chacon M, Thompson JH, Zhang X, Liu X, Mannick EE, Sadowska-Krowicka H, Charbonnet RM, Miller DA, Clark MJS. Antiinflammatory actions of cat’s claw: the role of NF-kB. Aliment Pharmacol Ther. 1998;12:1279–89. https://doi.org/10.1046/j.1365-2036.1998.00424.x.

    Article  CAS  PubMed  Google Scholar 

  11. Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles FM, Musah RA, Bobrowski P, Miller MJS. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine. 2002;9:325–37. https://doi.org/10.1078/0944-7113-00117.

    Article  CAS  PubMed  Google Scholar 

  12. Keplinger K, Keplinger D. Oxindole alkaloids having properties stimulating the immunologic system and preparation containing the same in: United State Patent Number 5,302,611. United State Patent and Trademark Office. 1994. https://pdfpiw.uspto.gov/.piw?Docid=05302611&homeurl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526d%3DPALL%2526p%3D1%2526u%3D%25252Fnetahtml%25252FPTO%25252Fsrchnum.htm%2526r%3D1%2526f%3DG%2526l%3D50%2526s1%3D5302611.PN.%2526OS%3DPN%2F5302611%2526RS%3DPN%2F5302611&PageNum=&Rtype=&SectionNum=&idkey=NONE&Input=View+first+page. Accessed 06 April 2022.

  13. Snow AD, Castillo GM, Nguyen BP, Choi PY, Cummings JA, Cam J, Hu Q, Lake T, Pan W, Kastin AJ, Kirschner DA, Wood SG, Rockenstein E, Masliah E, Lorimer S, Tanzi RE, Larsen L. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep. 2019;9:561. https://doi.org/10.1038/s41598-019-38645-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonçalves C, Dinis T, Batista MT. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity. Phytochemistry. 2005;66:89–98. https://doi.org/10.1016/j.phytochem.2004.10.025.

    Article  CAS  PubMed  Google Scholar 

  15. Castilhos LG, Rezer JP, Ruchel JB, Thorstenberg MLML, Jaques JAS, Schlemmer JB, Doleski PH, Rossato MF, da Silva MA, Casalli EA, da Cruz RC, Ferreira J, Athayde ML, Gonçalves JF, Leal DBR. Effect of Uncaria tomentosa extract on purinergic enzyme activities in lymphocytes of rats submitted to experimental adjuvant arthritis model. BMC Complement Altern Med. 2015;15:189. https://doi.org/10.1186/s12906-015-0694-4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheng Y, Pero RW, Amiri A, Bryngelsson C. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tomentosa. Anticancer Res. 1998;18:3363–8.

    CAS  PubMed  Google Scholar 

  17. Kaiser S, Verza SG, Moraes RC, de Resende PE, Pavei C, Ortega GG, Barreto F. Cat’s claw oxindole alkaloid isomerization induced by common extraction methods. Quim Nova. 2013;36:808–14. https://doi.org/10.1590/S0100-40422013000600012.

    Article  CAS  Google Scholar 

  18. Codevilla CF, Bazana MT, Silva CB, Barin JS, Menezes CR. Nanoestruturas contendo compostos bioativos extraídos de plantas. Ciência e Nat. 2015;37:142–51. https://doi.org/10.5902/2179460X19743.

    Article  Google Scholar 

  19. Runha FP, Cordeiro DS, Pereira CAM, Vilegas J, Oliveira WP. Production of dry extracts of medicinal Brazilian plants by spouted bed process: development of the process and evaluation of thermal degradation during the drying operation. Food Bioprod Process. 2001;79:160–8. https://doi.org/10.1205/096030801750425253.

    Article  CAS  Google Scholar 

  20. Paiva Reis RAS. Obtenção de produtos a partir das cascas de Uncaria tomentosa (Willdernow ex Roemer & Schultes) D.C: otimização da extração e secagem em spray-dryer utilizando planejamentos experimentais e avaliação da atividade antiinflamatória. 2017. 124p. Universidade de São Paulo. Ribeirão Preto. 2017. https://doi.org/10.11606/D.60.2018.tde-22052018-162804. Accessed 10 April 2022.

  21. Lima RQ. Estudos tecnológicos para a obtenção de forma farmacêutica sólida a partir de Endopleura uchi e Uncaria tomentosa. 2018. 102 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, 2018. https://tede.ufam.edu.br/handle/tede/6900. Accessed 10 April 2022.

  22. BRASIL, Farmacopéia Brasileira 5ª Edição Vol. 1. Brasília: Df; RDC n° 49 23/11/2010. Dou N° 224, 24 de novembro de 2010. In: Brazilian Pharmacopeia 5th edition. Agência Nacional de Vigilância Sanitária. 2010. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8025json-file-1. Accessed 06 April 2022.

  23. BRASIL, Farmacopéia Brasileira 5ª Edição Vol. 2. Brasília: Df; RDC n° 49 23/11/2010. Dou N° 224, 24 de novembro de 2010. In: Brazilian pharmacopeia, 5th ed. Agência Nacional de Vigilância Sanitária. 2010. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8015json-file-1. Accessed 06 April 2022.

  24. BRASIL, Farmacopéia Brasileira 6ª Edição Vol. 2. Brasília: Df; RDC n° 298 12/08/2019. Dou N° 156, 14 de agosto de 2019. In: Brazilian pharmacopeia, 6th ed. Agência Nacional de Vigilância Sanitária. 2019. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira. Accessed 06 April 2022.

  25. Nascimento TG, Silva AS, Lessa Constant PB, Silva SAS, Fidelis de Moura MAB, Almeida CP, Silva VC, Wanderley AB, Basílio-Júnior ID, Escodro PB. Phytochemical screening, antioxidant and antibacterial activities of some commercial extract of propolis. J Apic Res. 2018;57:246–54. https://doi.org/10.1080/00218839.2017.1412563.

    Article  Google Scholar 

  26. BRASIL, Dispõe sobre a validação de métodos analíticos e dá outras providências. Brasília: Df; RDC no 166, de 24 de julho de 2017.Dou No141, 25 de julho de 2017. In: Agência Nacional de Vigilância Sanitária. 2017. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19194581/do1-2017-07-25-resolucao-rdc-n-166-de-24-de-julho-de-2017-19194412. Accessed 06 April 2022.

  27. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  28. Ramos AH, Rockenbach BA, Ferreira CD, Gutkoski LC, de Oliveira M. Characteristics of flour and starch isolated from red rice subjected to different drying conditions. Starch. 2019. https://doi.org/10.1002/star.201800257.

    Article  Google Scholar 

  29. Santos TPR, Franco CML, do Carmo EL, Jane J, Leonel M. Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. J Food Sci Technol. 2019;56:376–83. https://doi.org/10.1007/s13197-018-3498-y.

    Article  CAS  PubMed  Google Scholar 

  30. Yan H, Zhengbiao GU. Morphology of modified starches prepared by different methods. Food Res Int. 2010;43:767–72. https://doi.org/10.1016/j.foodres.2009.11.013.

    Article  CAS  Google Scholar 

  31. Schmitt C, Sanchez C, Despond S, Renard D, Thomas F, Hardy J. Effect of protein aggregates on the complex coacervation between β-lactoglobulin and acacia gum at pH 4.2. Food Hydrocoll. 2000;14:403–13. https://doi.org/10.1016/S0268-005X(00)00022-9.

    Article  CAS  Google Scholar 

  32. Aburto LC, Tavares DQ, Martucci ET. Microencapsulation of orange essential oil. Food Sci Technol. 1998. https://doi.org/10.1590/S0101-20611998000100010.

    Article  Google Scholar 

  33. Fernandes RVB, Borges SV, Botrel DA, Silva EK, Costa JMG, Queiroz F. Microencapsulation of rosemary essential oil: characterization of particles. Dry Technol. 2013;31:1245–54. https://doi.org/10.1080/07373937.2013.785432.

    Article  CAS  Google Scholar 

  34. Hijo AACT, Costa JMG, Silva EK, Azevedo VM, Yoshida MI, Borges SV. Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J Food Process Eng. 2015;38:1–10. https://doi.org/10.1111/jfpe.12120.

    Article  CAS  Google Scholar 

  35. Fu ZQ, Wang LJ, Li D, Adhikari B. Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydr Polym. 2012;88:1319–25. https://doi.org/10.1016/j.carbpol.2012.02.010.

    Article  CAS  Google Scholar 

  36. Guinesi LS, Róz AL, Corradini E, Mattoso LHC, Teixeira EM, Curvelo AAS. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim Acta. 2006;447:190–6. https://doi.org/10.1016/j.tca.2006.06.002.

    Article  CAS  Google Scholar 

  37. Lemos PVF, Barbosa LS, Ramos IG, Coelho RE, Druzian JI. The important role of crystallinity and amylose ratio in thermal stability of starches. J Therm Anal Calorim. 2018;131:2555–67. https://doi.org/10.1007/s10973-017-6834-y.

    Article  CAS  Google Scholar 

  38. Janković B. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym. 2013;95:621–9. https://doi.org/10.1016/j.carbpol.2013.03.038.

    Article  CAS  PubMed  Google Scholar 

  39. Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta. 1998;319:17–25. https://doi.org/10.1016/S0040-6031(98)00355-4.

    Article  CAS  Google Scholar 

  40. Stulzer HK, Tagliari MP, Silva MS, Laranjeira MCM. Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat Am J Pharm. 2007;26:866–71.

    CAS  Google Scholar 

  41. Lacerda LG, Carvalho Filho MAS, Demiate IM, Bannach G, Ionashiro M, Schnitzler E. Thermal behaviour of corn starch granules under action of fungal α-amylase. J Therm Anal Calorim. 2008;93:445–9. https://doi.org/10.1007/s10973-006-8273-z.

    Article  CAS  Google Scholar 

  42. Rocha TS, Cunha VAG, Jane JL, Franco CML. Structural characterization of peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure. J Agric Food Chem. 2011;59:4208–16. https://doi.org/10.1021/jf104923m10.1021/jf104923m.

    Article  CAS  PubMed  Google Scholar 

  43. Navarro-Hoyos M, Alvarado-Corella D, Moreira-Gonzalez I, Arnaez-Serrano E, Monagas-Juan M. Polyphenolic composition and antioxidant activity of aqueous and ethanolic extracts from Uncaria tomentosa bark and leaves. Antioxidants. 2018. https://doi.org/10.3390/antiox7050065.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Navarro-Hoyos M, Sánchez-Patán F, Masis RM, Martín-Álvarez PJ, Ramirez WZ, Monagas MJ, Bartolomé B. Phenolic assesment of Uncaria tomentosa L. (cat’s claw): leaves, stem, bark and wood extracts. Molecules. 2015;20:22703–17. https://doi.org/10.3390/molecules201219875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Navarro M, Arnaez E, Moreira I, Hurtado A, Monge D, Monagas M. Polyphenolic composition and antioxidant activity of Uncaria tomentosa commercial bark products. Antioxidants. 2019. https://doi.org/10.3390/antiox8090339.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Menezes Filho ACP, Santos MC, Castro CFS. Estudo fitoquímico, bioativo, fotoprotetor e físico-químico do extrato floral de algodãozinho do Cerrado [Cochlospermum regium Schrank. (Pilg.)]–Bixaceae. Rev. Arq Científicos. 2020;3:59–71.

    Google Scholar 

  47. Ogawa CYL. Técnicas espectroscópicas para identificação e quantificação de compostos fenólicos sólidos. In: Repositorio Insitutcional da Universidade Estadual de Maringá. 2016. http://repositorio.uem.br:8080/jspui/bitstream/1/2738/1/000225600.pdf. Accessed 06 April 2022.

  48. Feng W, Hao Z, Li M. Isolation and structure identification of flavonoids. In: Flavonoids from biosynthesis to human health. Intech Open. 2017. https://www.intechopen.com/chapters/54713. Accessed 06 April 2022.

  49. Gouvêa MM, Pusceddu BH, Netto ADP, Peregrino CAF, Macedo EV, Mourão SC, Marques FFC. Solation of mitraphylline from Uncaria tomentosa (Willd. ex Schult.) DC. barks and development of spectrophotometric method for total alkaloids determination in Cat’s Claw samples. Phytochem Anal. 2020;31:262–72. https://doi.org/10.1002/pca.2891.

    Article  CAS  PubMed  Google Scholar 

  50. Calvo A, Dévényi D, Kószó B, Sanz S, Oelbermann AL, Maier M, Keve T, Komka K, Gamse T, Weidner E, Székely E. Controlling concentration of bioactive components in cat’s claw based products with a hybrid separation process. J Supercrit Fluids. 2017;125:50–5. https://doi.org/10.1016/j.supflu.2017.01.018.

    Article  CAS  Google Scholar 

  51. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  52. Löbenberg R, Krämer J, Shah VP, Amidon GL, Dressman JB. Dissolution testing as a prognostic tool for oral drug absorption: dissolution behavior of glibenclamide. Pharm Res. 2000;17:439–44. https://doi.org/10.1023/a:1007529020774.

    Article  PubMed  Google Scholar 

  53. Gomes AMM, Silva CEM, Ricardo NMPS. Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydr Polym. 2005;60:1–6. https://doi.org/10.1016/j.carbpol.2004.11.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CNPq (The Brazilian National Council for Scientific and Technological Development), CAPES (The Brazilian Coordination for the Personal Improvement of Superior Education) and FAPEAL (Foundation for Sponsoring Research in the State of Alagoas) for the scholarships of the Master's course in Nutrition (PPGNUT) and Pharmaceutical Sciences (PPGCF). The CNPq for financial support (Grant No. 446630/2014-4) according to the financial aid to the researchers 14/2014-Universal/MCT/CNPq and FAPEAL by the financial support (Grant No. 600 30 000431/2017) and scholarships—Connecting academia and business. The authors would also like to thank the GOLD CAFÉS LTDA in the person: Gustavo Antonio Antunes for University-Business partnership during PPG COMPANY—Connecting academia and business.

Author information

Authors and Affiliations

Authors

Contributions

TGdN conceived the experiment(s), TGdN, ALTFB, LMdA, FGCS, APdNP, MOFG, CFSA and EANR conducted the experiment(s), TGdN, ALTFB, FGCS, VdCS, DPM, JDdF, IDB-J and LMdA analysed the results. TGdN, ALTFB, MOFG, CFSA, LMdA, IDB-J, and TGdN, ALTFB, MOFG, LMdA, APdNP gathered the literature data. TGdN, ALTFB, DPM, JDdF, FGCS, and VdCS prepared the figures and supplementary materials. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ticiano Gomes do Nascimento.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, T.G., Borges, A.L.T.F., de Almeida, L.M. et al. Preparation and characterization of microcapsules loaded with polyphenols-enriched Uncaria tomentosa extract using spray-dryer technique. J Therm Anal Calorim 147, 11949–11963 (2022). https://doi.org/10.1007/s10973-022-11428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11428-y

Keywords

Navigation