Skip to main content

Advertisement

Log in

Valorization of pineapple waste as novel source of nutraceuticals and biofunctional compounds

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pineapple processing industry generates large amounts of by-products (peel, core and crown) with a negative environmental impact. The elimination of these implies high costs for food industries, being their main destination animal feed or composting, thus wasting their great potential value attributed to the rich content of bioactive compounds. In this review, we have focused on the description of the bioactive compounds present in pineapple by-products and on the environment-friendly extraction methodologies used to obtain them (ultrasound-assisted extraction, microwave-assisted extraction, submerged and solid-state fermentation), as well as applications of these compounds in different areas. The use of these by-products is a great alternative to mitigate current environmental problems; in addition, green extraction technologies have the advantage of using few solvents, have shorter extraction times and good yields, so they are suitable for obtaining bioactive compounds (gallic acid, catechin, epicatechin, ferulic acid, among others) present in these by-products, which have a high antioxidant, anti-inflammatory, antifungal, anticancer activity and have very relevant applications. This review article demonstrates the great potential of the bioactive compounds present in the pineapple waste that might be used on drugs or foods for treatment of diseases or improvement of the people health.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the authors have agreed to provide the data and material for open access.

References

  1. Ramli ANM, Aznan TNT, Illias RM (2017) Bromelain: From production to commercialisation. J Sci Food Agric 97(5):1386–1395. https://doi.org/10.1002/jsfa.8122

    Article  Google Scholar 

  2. FAO (2019) FAOSTAT. Food and Agricultural Commodities Production. Food and Agricultural Organization of the United Nations-FAO, Rome

  3. Hikal WM, Mahmoud AA, Said-Al Ahl HAH, Bratovcic A, Tkachenko KG, Kačániová M, Rodriguez RM (2021) Pineapple (Ananas comosus L. Merr.), waste streams, characterisation and valorisation: an overview. Open Ecol J 11(09):610–634. https://doi.org/10.4236/oje.2021.119039

  4. Ferreira EA, Siqueira HE, Boas EVV, Hermes VS, Rios ADO (2016) Bioactive Compounds and Antioxidant Activity of Pineapple Fruit of Different Cultivars. Rev Bras Frutic 38(3). https://doi.org/10.1590/0100-29452016146

  5. Fidrianny I, Virna V, Insanu M (2018) Antioxidant Potential of Different Parts of Bogor Pineapple (Ananas Comosus [L] Merr Var Queen) Cultivated in West Java-Indonesia. Asian J Pharma Clin Res 11(1):129. https://doi.org/10.22159/ajpcr.2018.v11i1.22022

    Article  Google Scholar 

  6. Freitas A, Moldão-Martins M, Costa HS, Albuquerque TG, Valente A, Sanches-Silva A (2015) Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L Merr) by-products. J Sci Food Agri 95(1):44–52. https://doi.org/10.1002/jsfa.6751

    Article  Google Scholar 

  7. Morais DR, Rotta EM, Sargi SC, Bonafe EG, Suzuki RM, Souza NE, Visentainer JV (2017) Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J Brazil Chem Soc 28(2):308–318. https://doi.org/10.5935/0103-5053.20160178

    Article  Google Scholar 

  8. Sznida E (2018) The EU ’ s Path Toward Sustainable Development Goals – Responsible Consumption and Production. SSRN, (November), 1–12. https://doi.org/10.2139/ssrn.3292067

  9. Fava F, Totaro G, Diels L, Reis M, Duarte J, Poggi-varaldo M, Carioca OB (2015) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol 32(1):100–108. https://doi.org/10.1016/j.nbt.2013.11.003

    Article  Google Scholar 

  10. Banerjee J, Singh R, Vijayaraghavan R, Macfarlane D, Patti AF, Arora A (2017) Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem 225:10–22. https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  Google Scholar 

  11. Pfaltzgraff LA, Debruyn M, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: A resource for high-value chemicals. Green Chem 15(2):307–314. https://doi.org/10.1039/c2gc36978h

    Article  Google Scholar 

  12. Misran E, Idris A, Mat Sarip SH, Ya’akob H (2019) Properties of bromelain extract from different parts of the pineapple variety Morris. Biocatal Agric Biotechnol 18:101095. https://doi.org/10.1016/j.bcab.2019.101095

    Article  Google Scholar 

  13. Huang YL, Chow CJ, Fang YJ (2011) Preparation and physicochemical properties of fiber-rich fraction from pineapple peels as a potential ingredient. J Food Drug Anal 19(3)

  14. Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: A potential source for bromelain extraction. Food Bioprod Process 90(3):385–391. https://doi.org/10.1016/j.fbp.2011.12.006

    Article  Google Scholar 

  15. Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249

  16. Rico X, Gullón B, Alonso JL, Yáñez R (2020) Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products : An overview. Food Res Int 132:109086. https://doi.org/10.1016/j.foodres.2020.109086

    Article  Google Scholar 

  17. Díaz-Vela J, Totosaus A, Cruz-Guerrero A, Pérez-Chabela ML (2013) In vitro evaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-indica L) peel and pineapple (Ananas comosus) peel as functional ingredients. Int J Food Sci Technol 48(7):1460–1467

    Article  Google Scholar 

  18. Li T, Shen P, Liu W, Liu C, Liang R, Yan N, Chen J (2014) Major Polyphenolics in Pineapple Peels and their Antioxidant Interactions, 2912. https://doi.org/10.1080/10942912.2012.732168

  19. Upadhyay A, Lama JP, Tawata S (2010) Utilization of Pineapple Waste: A Review. J Food Sci Technol Nepal 6:10–18. https://doi.org/10.3126/jfstn.v6i0.8255

    Article  Google Scholar 

  20. Gullón B, Gullón P, Eibes G, Cara C, De Torres A, López-Linares JC, Castro E (2018) Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci Total Environ 645(533–542):10

    Google Scholar 

  21. Pardo M, Cassellis R, Escobedo R, Garcia E (2014) Chemical characterisation of the Industrial residues of the pineapple (Ananas comosus). J Agri Chem Environ 3(2B):53–56

    Google Scholar 

  22. Roda A, de Faveri DM, Dordoni R, Lambri M (2014) Vinegar production from pineapple wastes –preliminary saccharification trials. Chemical Engineering Transactions 37:607–612. https://doi.org/10.3303/CET1437102

  23. Romelle F, Ashwini R, Manohar R (2016) Chemical composition of some selected fruit peels. Eur J Food Sci Technol 4:12–21

    Google Scholar 

  24. Rani DS, Nand K (2004) Ensilage of pineapple processing waste for methane generation. Waste Manage 24:523–528

    Article  Google Scholar 

  25. Banerjee S, Ranganathan V, Patti A, Arora A (2018) Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci Technol 82(September):60–70. https://doi.org/10.1016/J.TIFS.2018.09.024

    Article  Google Scholar 

  26. Sepúlveda L, Romaní A, Noé C, Teixeira J (2018) Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innov Food Sci Emerg Technol 47(September 2017):38–45. https://doi.org/10.1016/j.ifset.2018.01.012

    Article  Google Scholar 

  27. Tauseef S, Premalatha M, Abbasi T, Abbasi S (2013) Methane capture from livestock manure. J Environ Manage 117:187–207

    Article  Google Scholar 

  28. Morais DR, Rotta EM, Sargi SC, Schmidt EM, Bonafe EG, Eberlin MN, Visentainer JV (2015) Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Res Int 77:392–399. https://doi.org/10.1016/j.foodres.2015.08.036

    Article  Google Scholar 

  29. Selani MM, Bianchini A, Ratnayake WS, Flores RA, Massarioli AP, Alencar SM De (2016) Physicochemical , Functional and Antioxidant Properties of Tropical Fruits Co-products. Plant Foods Hum Nutr 137–144. https://doi.org/10.1007/s11130-016-0531-z

  30. Larrauri JA, Rupérez P, Saura Calixto F (1997) Pineapple Shell as a Source of Dietary Fiber with Associated Polyphenols. J Agric Food Chem 45(10):4028–4031. https://doi.org/10.1021/jf970450j

    Article  Google Scholar 

  31. Tochi B, Wang Z, Xu S, Zhang W (2008) Therapeutic application of pineapple protease(bromelain): A review. Pakistan JJournal of Nutrition 7(4):513–520

    Article  Google Scholar 

  32. Setiasih S, Putri M, Handayani S, Hudiyono S (2020) The effects of PMSF and cysteine addition into partially purified bromelain from pineapple ( Ananas comosus [ L ] Merr ) cores to its kinetics behaviour The effects of PMSF and cysteine addition into partially purified bromelain from pineapple ( Ananas co. 3rd International Symposium on Current Progress in Functional Materials 76:31–5. https://doi.org/10.1088/1757-899X/763/1/012026

  33. Roha S, Zainal S, Noriham A, Nadzirah K (2013) Determination of sugar content in pineapple waste variety N36. Int Food Res J 20(4):1941–1943

    Google Scholar 

  34. Zaki NAM, Rahman NA, Zamanhur NA, Hashib SA (2017) Ascorbic Acid Content and Proteolytic Enzyme Activity of Microwave-Dried Pineapple Stem and Core. Chem Eng Trans 56:1369–1374

    Google Scholar 

  35. Herrero M, Castro-Puyana M, Ibáñez E, Cifuentes A (2013) Compositional Analysis of Foods. Liq Chromatogr (pp. 295–317). Elsevier. https://doi.org/10.1016/B978-0-12-415806-1.00011-5

  36. Santos DI, Martins CF, Amaral RA, Brito L, Saraiva JA, Vicente AA, Moldão-Martins M (2021) Pineapple (Ananas comosus L) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules 26(11):3216. https://doi.org/10.3390/molecules26113216

    Article  Google Scholar 

  37. Alegria C, Pinheiro J, Duthoit M, Gonçalves EM, Moldão-Martins M, Abreu M (2012) Fresh-cut carrot (cv Nantes) quality as affected by abiotic stress (heat shock and UV-C irradiation) pre-treatments. LWT - Food Science and Technology 48(2):197–203. https://doi.org/10.1016/j.lwt.2012.03.013

    Article  Google Scholar 

  38. Yazid NA, Roslan AR (2019) Production of enzymes from pineapple crown and coffee husk by solid state fermentation Production of enzymes from pineapple crown and coffee husk by solid state fermentation. 26th Regional Symposium on Chemical Engineering (RSCE 2019), 778(IOP Conf. Series: Materials Science and Engineering), 1–8. https://doi.org/10.1088/1757-899X/778/1/012035

  39. Tran AV (2006) Chemical analysis and pulping study of pineapple crown leaves. Ind Crops Prod 24:66–74. https://doi.org/10.1016/j.indcrop.2006.03.003

    Article  Google Scholar 

  40. Prado KS, Spinacé MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

    Article  Google Scholar 

  41. Barbosa AS, Siqueira LAM, Medeiros RLBA, Melo DMA, Melo MAF, Freitas JCO, Braga RM (2019) Renewable aromatics through catalytic flash pyrolysis of pineapple crown leaves using HZSM-5 synthesized with RHA and diatomite. Waste Manage 88:347–355. https://doi.org/10.1016/j.wasman.2019.03.052

    Article  Google Scholar 

  42. Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: Production and extraction by solid-state fermentation. Biotechnol Adv 29:365–373

    Article  Google Scholar 

  43. Ferrentino G, Scampicchio MM, Ferrentino G, Scampicchio MM, Ferrentino G, Scampicchio MM (2018) Current technologies and new insights for the recovery of high valuable compounds from fruits from fruits by-products, 8398. https://doi.org/10.1080/10408398.2016.1180589

  44. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352

    Article  Google Scholar 

  45. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  Google Scholar 

  46. Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44(6):453–464

    Article  Google Scholar 

  47. Lapornik B, Prošek M, Golc Wondra A (2005) Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 71:214–222

    Article  Google Scholar 

  48. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemestry 68:2722–2735

    Article  Google Scholar 

  49. Hossain MA, Rahman SMM (2011) Total phenolics, fl avonoids and antioxidant activity of tropical fruit pineapple. FRIN 44(3):672–676. https://doi.org/10.1016/j.foodres.2010.11.036

    Article  Google Scholar 

  50. Sopie E, Tanoh H, Kouakou L, Yatty J, Kouamé P, Mérillon J (2011) Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill) Influence of the origin of suckers. Australian J Basic App Sci 5(6):1372–1378

    Google Scholar 

  51. Campos DA, Ribeiro TB, Teixeira JA, Pastrana L (2020) Integral Valorization of Pineapple ( Ananas comosus L ) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods 9(1):1–22. https://doi.org/10.3390/foods9010060

    Article  Google Scholar 

  52. Arora S, Itankar P (2018) Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J Tradit Complement Med 8:476–482

    Article  Google Scholar 

  53. Bazinet L, Labbe DP, Tremblay A (2007) Production of green teaEGC and EGCG enriched fractions by a two-step extractionprocedure. Sep Purif Technol 56:53–56

    Article  Google Scholar 

  54. Vijaykumar L, Murchana C, Mihir Kumar P (2019) Purification of catechins from Camellia sinensis using membrane cell. Food Bioprod Process 117:203–212

    Article  Google Scholar 

  55. Sengar AS, Sunil CK, Rawson A, Venkatachalapathy N (2022) Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW). J Food Measure Character 16(2):1146–1158. https://doi.org/10.1007/s11694-021-01243-8

    Article  Google Scholar 

  56. Auras R (2012) Antioxidant Activity and Di ff usion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(. https://doi.org/10.1021/jf300668u

  57. Bae K, Tan S, Yamashita A, Ang W, Gao S, Wang S, Kurisawa M (2017) Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 148:41–53

    Article  Google Scholar 

  58. Yilmaz Y (2006) Novel uses of catechins in foods. Trends Food Sci Technol 17(2):64–71

    Article  Google Scholar 

  59. Dopico-García MS, Castro-López MM, López-Vilariño JM, González-Rodríguez MV, Valentao P, Andrade PB, García-Garabal S, Abad MJ (2011) Natural extracts as potential source of antioxidants to stabilize polyolefins. J Appl Polym Sci 119:3553–3559

    Article  Google Scholar 

  60. Goleniowski M, Bonfill M, Cusido R, & Palazón J (2013) Phenolic acids. Nat Prod (pp. 1951–1973). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_64

  61. Sadh PK, Kumar S, Chawla P, Duhan J (2018) Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules 23(10):2560. https://doi.org/10.3390/molecules23102560

  62. Erukainure O, Sanni O, Islam M (2018) Chapter 6 - Clerodendrum volubile: phenolics and applications to health. In: Polyphenols: mechanisms of action in human health and disease (Second). Academic Press, pp 53–68

  63. Embuscado ME (2015) Spices and herbs: natural sources of antioxidants-a mini review. J Functional Foods 18:811–819

    Article  Google Scholar 

  64. Cruz Rosas E, Barbosa Correa L, & Henriques-Graças M (2019) Chapter 28 - Antiinflammatory Properties of Schinus terebinthifolius and Its Use in Arthritic Conditions. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (Second, pp. 489–505). Academic Press

  65. Ou S, Kwork K (2004) Review ferulic acid: Pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 3(2B):53–56

    Google Scholar 

  66. Ong K, Wai T, Ling L (2014) Pineapple cannery waste as a potential substrate for microbial biotransformation to produce vanillic acid and vanillin. Int Food Res J 21(3):953–958

    Google Scholar 

  67. Grand View Research (2017) Vanillin market analysis, by end-use (food & beverage, fragrance, pharmaceutical), by region (North America, Europe, Asia Pacific, central & South America, MEA), and segment forecasts, 2018 - 2025. Retrieved from https://www.grandviewresearch.com/industry-analysis/vanillin-market.

  68. Saraswaty V, Risdian C, Primadona I, Andriyani R, Andayani DGS, Mozef T (2017) Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Earth and Environmental Science 60:012013. https://doi.org/10.1088/1755-1315/60/1/012013

  69. Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2016) Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT - Food Science and Technology 65:978–986. https://doi.org/10.1016/j.lwt.2015.09.027

  70. Selani M, Guidolin S, Tadeu C, Ratnayake WS, Flores RA, Bianchini A (2014) Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry 163:23–30. https://doi.org/10.1016/j.foodchem.2014.04.076

  71. Chaurasiya RS, Umesh Hebbar H (2013) Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Sep Purif Technol 111:90–97. https://doi.org/10.1016/j.seppur.2013.03.029

  72. Leão DP, Franca AS, Oliveira LS, Bastos R, Coimbra MA (2017) Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chem 225:146–153. https://doi.org/10.1016/j.foodchem.2017.01.027

    Article  Google Scholar 

  73. Gomez S, Kuruvila B, Maneesha PK, Joseph M (2022) Variation in physico-chemical, organoleptic and microbial qualities of intermediate moisture pineapple (Ananas comosus (L) Merr) slices during storage. Food Prod, Process Nutri 4(1):5. https://doi.org/10.1186/s43014-022-00084-2

    Article  Google Scholar 

  74. Martins N, Ferreira ICFR (2017) Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci Technol 62:33–48. https://doi.org/10.1016/j.tifs.2017.01.014

    Article  Google Scholar 

  75. Wen P, Hu T, Linhardt RJ, Liao S, Wu H, Zou Y (2019) Trends in Food Science & Technology Mulberry : A review of bioactive compounds and advanced processing technology. Trends in Food Sci Technol 83(November 2018):138–158. https://doi.org/10.1016/j.tifs.2018.11.017

    Article  Google Scholar 

  76. Giacometti JD, BursaćKovačević P, Putnik D, Gabrić T, Bilušić G, Krešić V, Stulić FJ, RežekJambrak A (2018) Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 113:245–262. https://doi.org/10.1016/j.foodres.2018.06.036

    Article  Google Scholar 

  77. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  Google Scholar 

  78. Aires A (2017) Phenolics in foods: Extraction, analysis and measurements. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic compounds: Natural sources, importance and applications. (2833). https://doi.org/10.5772/66889

  79. Rombaut NA, Tixier A-S, Bily A, Chemat F (2014) Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioprod Biorefin 8(4):530–544

    Article  Google Scholar 

  80. Roselló-Soto E, Koubaa M, Moubarik A, Lopes RP, Saraiva JA, Boussetta N (2015) Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: non-conventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45(2):296–310

    Article  Google Scholar 

  81. Barba FJ, Grimi N, Vorobiev E (2015) Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J Food Eng 149:222–228

    Article  Google Scholar 

  82. Galanakis CM, Barba FJ, Prasad KN (2015) Cost and safety issues of emerging technologies against conventional techniques. Food Waste Recover Process Technol Ind Technol (pp. 323–338)

  83. Galanakis CM, Rizou M, Aldawoud TMS, Ucak I, Rowan NJ (2021) Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci Technol 110:193–200. https://doi.org/10.1016/j.tifs.2021.02.002

    Article  Google Scholar 

  84. Koirala S, Prathumpai W, Anal AK (2021) Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. Int Dairy J 118:105026. https://doi.org/10.1016/j.idairyj.2021.105026

    Article  Google Scholar 

  85. Silveira da Rosa G, Vanga SK, Gariepy Y, Raghavan V (2019) Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L). Innovative Food Science & Emerging Technologies 58:102234. https://doi.org/10.1016/j.ifset.2019.102234

    Article  Google Scholar 

  86. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics - Sonochem 48(June):538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018

    Article  Google Scholar 

  87. Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A (2020) Bioactive Phenolic Compounds From Agri-Food Wastes : An Update on Green and Sustainable Extraction Methodologies 7(May):1–27. https://doi.org/10.3389/fnut.2020.00060

    Article  Google Scholar 

  88. Talmaciu A, Volf I, Popa VI (2015) A comparative analysis of the “green” techniques applied for polyphenols extraction from bioresources. Chem Biodiversity 12:1635–1651. https://doi.org/10.1002/cbdv.201400415

    Article  Google Scholar 

  89. Tiwari BK (2015) Ultrasound: A clean, green extraction technology. TrAC, Trends Anal Chem 71:100–109. https://doi.org/10.1016/j.trac.2015.04.013

    Article  Google Scholar 

  90. Chemat FN, Rombaut AG, Sicaire A, Meullemiestre A, FabianoTixier S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A Rev Ultrasonics Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  91. Setyaningsih W, Saputro IE, Carrera CA, Palma M (2019) Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem 288:221–227. https://doi.org/10.1016/j.foodchem.2019.02.107

    Article  Google Scholar 

  92. Martínez R, Torres P, Meneses MA, Figueroa JG, Pérez-álvarez JA, Viuda-martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135(3):1520–1526. https://doi.org/10.1016/j.foodchem.2012.05.057

    Article  Google Scholar 

  93. Hernández-Santos B, Rodríguez-Miranda J, Herman-Lara E, Torruco-Uco JG, Carmona-García R, Juárez-Barrientos JM, Martínez-Sánchez CE (2016) Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason Sonochem 31:429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029

    Article  Google Scholar 

  94. Rathnakumar K, Anal AK, Lakshmi K (2017) Optimization of Ultrasonic Assisted Extraction of Bioactive components from different Parts of Pineapple Waste. Int J Agri, Environ Biotechnol 10(5):553. https://doi.org/10.5958/2230-732X.2017.00068.7

    Article  Google Scholar 

  95. Liu SH, Liu YG, Zhang XM (2018) Extraction conditions and antioxidant activities of the extract of pineapple peel by ultrasonic. IOP Conference Series: Earth and Environmental Science 186:012038

  96. Yahya NA, Wahab RA, Shuh TL, & Hamid MA (2019) Ultrasound-assisted extraction of polyphenols from pineapple skin Ultrasound-Assisted Extraction of Polyphenols from Pineapple Skin, 020002(September)

  97. Carlqvist K, Wallberg O, Lidén G, Börjesson P (2022) Life cycle assessment for identification of critical aspects in emerging technologies for the extraction of phenolic compounds from spruce bark. J Clean Prod 333:130093. https://doi.org/10.1016/j.jclepro.2021.130093

    Article  Google Scholar 

  98. Kataoka H (2018) Pharmaceutical analysis | sample preparation. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14358-6

  99. Leadbeater NE (2014) Organic synthesis using microwave heating. reference module in chemistry, molecular sciences and chemical engineering. In P. Knochel & G. A. Molander (Eds.), Comprehensive organic synthesis (2nd., pp. 234–286). Elsevier. https://doi.org/10.1016/B978-0-08-097742-3.00920-4

  100. Oroian M, Escriche I (2015) Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 74:10–36

    Article  Google Scholar 

  101. Alias NH, Abbas Z (2017) Preliminary Investigation on the Total Phenolic Content and Antioxidant Activity of Pineapple Wastes via Microwave- Assisted Extraction at Fixed Microwave Power. Chem Eng Trans 56(2009):1675–1680. https://doi.org/10.3303/CET1756280

    Article  Google Scholar 

  102. Alias Halaliza N, Abbas Z (2017) Microwave-assisted extraction of phenolic compound from pineapple skins: the optimum operating condition and comparison with soxhlet extraction. Malaysian J Anal Sci 21(3):690–699. https://doi.org/10.17576/mjas-2017-2103-18

  103. Hatam SF, Suryanto E, Abidjulu J (2013) Aktivitas antioksidan dari ekstrak kulit nenas (Ananas comosus (L) Merr). Pharma, J Ilmiah Farmasi 2(1):2310–2315

    Google Scholar 

  104. Akhtar Zakaria N, Rahman RA, Norulfairuz D, Zaidel A, Dailin DJ, Jusoh M (2021) Microwave-assisted extraction of pectin from pineapple peel Article history. In / Malaysian Journal of Fundamental and Applied Sciences (Vol. 17, Issue 1).

  105. Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3(3):480–486

    Google Scholar 

  106. Prado Barragán LA, Figueroa JJB, Rodríguez Durán LV, Aguilar González CN, Hennigs C (2016) Fermentative Production Methods. In Biotransformation of Agricultural Waste and By-Products (pp. 189–217). https://doi.org/10.1016/B978-0-12-803622-8.00007-0

  107. Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, & Kim SK (2016) Marine Microbial Amylases: Properties and Applications. In S.-K. Kim & F. Toldrá (Eds.), Adv Food Nutr Res (pp. 161–177). https://doi.org/10.1016/bs.afnr.2016.07.001

  108. Beitel SM, Knob A (2013) Penicillium miczynskii b-glucosidase: A Glucose-Tolerant Enzyme Produced Using Pineapple Peel as Substrate. Ind Biotechnol 9(5):293–301. https://doi.org/10.1089/ind.2013.0016

    Article  Google Scholar 

  109. Rashad MM, Mahmoud AE, Ali MM, Nooman MU, Amr S (2016) Antioxidant and Anticancer Agents Produced from Pineapple Waste by Solid State Fermentation 7(6):287–296

    Google Scholar 

  110. Mensah JKM, Twumasi P (2017) Use of pineapple waste for single cell protein ( SCP ) production and the e ff ect of substrate concentration on the yield, (July 2016), 1–9. https://doi.org/10.1111/jfpe.12478

  111. Abdullah A, Winaningsih I (2020) Effect of some parameter on lactic acid fermentation from pineapple waste by Lactobacillus delbrueckii. AIP Conferences Proceedings 060002(January):1–8. https://doi.org/10.1063/1.5140929

    Article  Google Scholar 

  112. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002

    Article  Google Scholar 

  113. Kumar PGV, Paul SK, Khobragade CB, Bania BK, Sengupta DK (2020) Requirements of mixed tangerine (Citrus tangerine) and pineapple (Ananas comosus) powdered peel wastes fermentation for citric acid production. Agric Eng Int CIGR J 22(2):194–207

    Google Scholar 

  114. Sharma R, Oberoi HS, Dhillon GS (2016) Fruit and Vegetable Processing Waste. In Agro-Industrial Wastes as Feedstock for Enzyme Production (pp. 23–59). Elsevier. https://doi.org/10.1016/B978-0-12-802392-1.00002-2

  115. Doriya K, Jose N, Gowda M, Kumar DS (2016) Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase (pp. 115–135). https://doi.org/10.1016/bs.afnr.2016.05.003

  116. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. https://doi.org/10.1016/j.bej.2013.10.013

    Article  Google Scholar 

  117. Webb C, Manan MA (2017) Design aspects of solid state fermentation as applied to microbial bioprocessing. J App Biotechnol Bioeng 4(1):511–532

    Google Scholar 

  118. Cho KM, Hong SY, Math RK, Lee JH, Kambiranda DM, Kim JM, … Yun HD (2008) Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem 114:413–419

  119. Imandi S, Bandaru V, Somalanka S, Bandaru S, Garapati H (2008) Application of statistical experimental designs of medium constituents for the production of citric acid from pineapple waste. Biores Technol 99(10):4445–4450

    Article  Google Scholar 

  120. Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11(1):22. https://doi.org/10.1186/s13065-017-0251-y

    Article  Google Scholar 

  121. Sousa BA, Correia RTP (2012) Phenolic content, antioxidant activity and antiamylolytic activity of extracts obtained from bioprocessed pineapple and guava wastes. Braz J Chem Eng 29:25–30

    Article  Google Scholar 

  122. Aziman SN, Tumari HH, Zain NAM (2015) Determination of lactic acid production by Rhizopus Oryzae in solid state fermentation of pineapple waste. Jurnal Teknologi 77(31):95–102

    Article  Google Scholar 

  123. Zain NAM, Aziman SN, Suhaimi MS, Idris A (2021) Optimization of L(+) lactic acid production from solid pineapple waste (SPW) by Rhizopus oryzae NRRL 395. J Polym Environ 29(1):230–249. https://doi.org/10.1007/s10924-020-01862-0

  124. Aruna TE (2019) Production of value-added products from pineapple peels using solid state fermentation. Innov Food Sci Emerg Technol 57:102193. https://doi.org/10.1016/j.ifset.2019.102193

    Article  Google Scholar 

  125. Yazid NA, Roslan AR (2020). Production of enzymes from pineapple crown and coffee husk by solid state fermentation Production of enzymes from pineapple crown and coffee husk by solid state fermentation. https://doi.org/10.1088/1757-899X/778/1/012035

    Article  Google Scholar 

  126. Badhani B, Sharma N, Kakkar R (2015) Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv 5(35):27540–27557. https://doi.org/10.1039/C5RA01911G

    Article  Google Scholar 

  127. Chia YC, Rajbanshi R, Calhoun C, Chiu RH (2010) Anti-neoplastic Effects of Gallic Acid, a Major Component of Toona Sinensis Leaf Extract, on Oral Squamous Carcinoma Cells. Molecules 15(11):8377–8389. https://doi.org/10.3390/molecules15118377

    Article  Google Scholar 

  128. Inoue M, Suzuki R, Sakaguchi T, Lee M, Takeda T, Ogiwara Y, … Chen H (1995) Selective Induction of Cell Death in Cancer Cells by Gallic Acid. Biol Pharm Bull 18(11):1526–1530

  129. Kim M, Seong A, Yoo J, Jin C, Lee Y, Kim YJ, … Yoon H (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses β‐amyloid neurotoxicity by inhibiting microglial‐mediated neuroinflammation.Mol Nutr Food Res 55(12):1798–1808https://doi.org/10.1002/mnfr.201100262

  130. Ohno T, Inoue M, Ogihara Y (2001) Cytotoxic Activity of Gallic Acid against Liver Metastasis of Mastocytoma Cells P-815. Anticancer Res 21(6A):3875–3880

    Google Scholar 

  131. Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, Yasuda N, … Fujiwara H (1999) Induction of Apoptosis by Gallic Acid in Lung Cancer Cells. Anti Cancer Drugs 10(9):845–851https://doi.org/10.1097/00001813-199910000-00008

  132. Patel SS, Goyal RK (2011) Cardioprotective Effects of Gallic Acid in Diabetes-induced Myocardial Dysfunction in Rats. Pharma Res 3(4):239–245. https://doi.org/10.4103/0974-8490.89743

    Article  Google Scholar 

  133. Priscilla DH, Prince PSM (2009) Cardioprotective Effect of Gallic Acid on Cardiac troponin-T, Cardiac Marker Enzymes, Lipid Peroxidation Products and Antioxidants in Experimentally Induced Myocardial Infarction in Wistar Rats. Chem Biol Interact 179(2–3):118–124. https://doi.org/10.1016/j.cbi.2008.12.012

    Article  Google Scholar 

  134. Rasool MK, Sabina EP, Ramya SR, Preety P, Patel S, Mandal N, … Samuel J (2010) Hepatoprotective and antioxidant effects of gallic acid in paracetamol‐induced liver damage in mice. J Pharm Pharmacol 62(5):638–643. https://doi.org/10.1211/jpp.62.05.0012

  135. Veluri R, Singh RP, Liu Z, Thompson JA, Agarwal R, Agarwal C (2006) Fractionation of Grape Seed Extract and Identification of Gallic Acid as One of the Major Active Constituents Causing Growth Inhibition and Apoptotic Death of DU145 Human Prostate Carcinoma Cells. Carcinogenesis 27(7):1445–1453. https://doi.org/10.1093/carcin/bgi347

    Article  Google Scholar 

  136. Yu M, Chen X, Liu J, Ma Q, Zhuo Z, Chen H, … Hou ST (2019) Gallic acid disruption of Aβ1–42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 124:67–80. https://doi.org/10.1016/j.nbd.2018.11.009

  137. Zhou Y, Jin G, Mi R, Dong C, Zhang J, Liu F (2014) Neuroprotective Effects of Gallic Acid against Hypoxia/reoxygenation-induced Mitochondrial Dysfunctions in Vitro and Cerebral Ischemia/reperfusion Injury in Vivo. Brain Res 1556:57–66. https://doi.org/10.1016/j.brainres.2014.09.039

    Article  Google Scholar 

  138. Steingass CB, Glock MP, Schweiggert RM, Carle R (2015) Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L] Merr) infructescence by HPLC-DAD-ESI-MS n and GC-MS analysis. Anal Bioanal Chem 407(21):6463–6479. https://doi.org/10.1007/s00216-015-8811-2

    Article  Google Scholar 

  139. Lourenço SC, Campos DA, Gómez-García R, Pintado M, Oliveira MC, Santos DI, Corrêa-Filho LC, Moldão-Martins M, Alves VD (2021) Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods 10(6):1255. https://doi.org/10.3390/foods10061255

    Article  Google Scholar 

  140. Du L, Sun G, Zhang X, Liu Y, Prinyawiwatkul W, Xu Z, Shen Y (2016) Comparisons and correlations of phenolic profiles and anti-oxidant activities of seventeen varieties of pineapple. Food Sci Biotechnol 25(2):445–451. https://doi.org/10.1007/s10068-016-0061-3

    Article  Google Scholar 

  141. Rasheed AA, Cobham EI, Zeighami M, & Ong SP (2012) Extraction of phenolic compounds from pineapple fruit. Proceedings of the 2nd International Symposium on Processing & Drying of Foods, Fruits & Vegetables 1–8

  142. Gu R, Zhang M, Hu M, Xu D, Xie Y (2018) Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. Biomed Pharmacother 105:491–497. https://doi.org/10.1016/j.biopha.2018.05.158

    Article  Google Scholar 

  143. Zhu L, Gu P, Shen H (2019) Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol 67:129–137. https://doi.org/10.1016/j.intimp.2018.11.049

    Article  Google Scholar 

  144. Fang Lz, Lin D, Warner RD, Ha M (2018) Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem 260:90–96. https://doi.org/10.1016/j.foodchem.2018.04.005

    Article  Google Scholar 

  145. Zhao Y, Saldaña MDA (2019) Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. J Supercritical Fluids 143:97–106. https://doi.org/10.1016/j.supflu.2018.07.025

    Article  Google Scholar 

  146. Zhang X-K, He F, Zhang B, Reeves MJ, Liu Y, Zhao X, Duan C-Q (2018) The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res Int 106:568–579. https://doi.org/10.1016/j.foodres.2017.12.054

    Article  Google Scholar 

  147. Yadav S, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605. https://doi.org/10.1016/j.foodchem.2020.127605

    Article  Google Scholar 

  148. Atoui AK, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chem 89:27–36

    Article  Google Scholar 

  149. Bae J, Kim N, Shin Y, Kim S-Y, Kim Y-J (2020) Activity of catechins and their applications. Biomed Dermatol 4(20):1–10. https://doi.org/10.1186/s41702-020-0057-8

    Article  Google Scholar 

  150. Xu Zhimin, Howard LR (2012) Analysis of Antioxidant-Rich Phytochemicals. Wiley-Blackwell. Inc., Hoboken, NJ, USA. pp. 1-16. https://doi.org/10.1002/9781118229378

  151. Ruengdech A, Siripatrawan U (2021) Application of catechin nanoencapsulation with enhanced antioxidant activity in high pressure processed catechin-fortified coconut milk. LWT - Food Science and Technology 140(April 2021):110594. https://doi.org/10.1016/j.lwt.2020.110594

    Article  Google Scholar 

  152. Kaewprachu P, Amara CB, Oulahal N, Gharsallaoui A, Joly C, Tongdeesoontorn W, Degraeve P (2018) Gelatin films with nisin and catechin for minced pork preservation. Food Packaging and Shelf Life 18(December 2018):173–183. https://doi.org/10.1016/j.fpsl.2018.10.011

    Article  Google Scholar 

  153. Rawdkuen S, Suthiluk P, Kamhangwong D, Benjakul S (2012) Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme. Chem Cent J 6(1):131. https://doi.org/10.1186/1752-153X-6-131

    Article  Google Scholar 

  154. Gallego MG, Skowyra M, Gordon MH, Azman NAM, Almajano MP (2017) Effect of Leaves of Caesalpinia decapetala on Oxidative Stability of Oil-in-Water Emulsions. Antioxidants 6(1):1–17. https://doi.org/10.3390/antiox6010019

    Article  Google Scholar 

  155. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromol 10(7):1923–1930. https://doi.org/10.1021/bm900325t

    Article  Google Scholar 

  156. Gopal J, Muthu M, Paul D, Kim D-H, Chun S (2016) Bactericidal activity of green tea extracts: the importance of catechin containing nano particles. Sci Rep 6:1–14. https://doi.org/10.1038/srep19710

    Article  Google Scholar 

  157. Goyal AK, Bhat M, Sharma M, Garg M, Khairwa A, Garg R (2017) Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: An in vivo study. J Indian Soc Pedodoncitics Preventive Dentistry 35(1):41–46. https://doi.org/10.4103/0970-4388.199227

    Article  Google Scholar 

  158. Ganeshpurkar A, Saluja AK (2018) Protective effect of catechin on humoral and cell mediated immunity in rat model. Int Immunopharmacol 54(January 2018):261–266. https://doi.org/10.1016/j.intimp.2017.11.022

    Article  Google Scholar 

  159. Logsdon AL, Herring BJ, Lockard JE, Miller BM, Kim H, Hood RD, Bailey MM (2012) Exposure to green tea extract alters the incidence of specific cyclophosphamide-induced malformations. Develop Reprod Toxicol 95(3):231–237. https://doi.org/10.1002/bdrb.21011

    Article  Google Scholar 

  160. Sun H, Yin M, Hao D, Shen Y (2020) Anti-Cancer Activity of Catechin against A549 Lung Carcinoma Cells by Induction of Cyclin Kinase Inhibitor p21 and Suppression of Cyclin E1 and P-AKT. Appl Sci 10(6):1–8. https://doi.org/10.3390/app10062065

    Article  Google Scholar 

  161. Kumar M, Chandel M, Kaur P, Pandit K, Kaur V, Kaur S, Kaur S (2016) Chemical composition and inhibitory effects of water extract of Henna leaves on reactive oxygen species, DNA scission and proliferation of cancer cells. EXCLI Journal 15:842–857. https://doi.org/10.17179/excli2016-429

    Article  Google Scholar 

  162. Manikandan R, Beulaja M, Arulvasu C, Sellamuthu S, Dinesh D, Prabhu D, … Prabhu N (2012) Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines. Microsc Res Tech 75(2):112–116. https://doi.org/10.1002/jemt.21032

  163. Zheng JS, Yang J, Fu YQ, Huang T, Huang YJ, Li D (2013) Effects of green tea, black tea, and coffee consumption on the risk of esophageal cancer: A systematic review and meta-analysis of observational studies. Nutr Cancer 65(1):1–16

    Article  Google Scholar 

  164. Addepalli V, Suryavanshi SV (2018) Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed Pharmacother 108:1517–1523. https://doi.org/10.1016/j.biopha.2018.09.179

    Article  Google Scholar 

  165. Abdulkhaleq LA, Assi MA, Noor MHM, Abdullah R, Saad MZ, Taufiq-Yap YH (2017) Therapeutic uses of epicatechin in diabetes and cancer. Veterinary World 10(8):869–872. https://doi.org/10.14202/vetworld.2017.869-872

    Article  Google Scholar 

  166. Azizan A, Lee AX, Abdul Hamid NA, Maulidiani M, Mediani A, Abdul Ghafar SZ, Zolkeflee NKZ, Abas F (2020) Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods 9(2):173. https://doi.org/10.3390/foods9020173

    Article  Google Scholar 

  167. Lawal U, Maulidiani M, Shaari K, Ismail IS, Khatib A, Abas F (2017) Discrimination of Ipomoea aquatica cultivars and bioactivity correlations using NMR-based metabolomics approach. Plant Biosys - An Int J Deal All Aspects of Plant Biol 151(5):833–843. https://doi.org/10.1080/11263504.2016.1211198

    Article  Google Scholar 

  168. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of ALPHA-Glucosidase and ALPHA-Amylase by Flavonoids. J Nutrition Sci Vitaminol 52(2):149–153. https://doi.org/10.3177/jnsv.52.149

    Article  Google Scholar 

  169. Morrison M, Van der Heijden R, Heeringa P, Kaijzel E, Verschuren L, Blomhoff R, Kleemann R (2014) Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo. Atherosclerosis 233(1):149–156. https://doi.org/10.1016/j.atherosclerosis.2013.12.027

    Article  Google Scholar 

  170. Zhang H, Deng A, Zhang H, Yu Z, Liu Y, Peng S, … Wang W (2016) The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-κB pathway. Pharmacol Rep 68(3):514–520. https://doi.org/10.1016/j.pharep.2015.12.011

  171. Zhang X, Lin D, Jiang R, Li H, Wan J, Li H (2016) Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol Rep 36(1):271–278. https://doi.org/10.3892/or.2016.4804

    Article  Google Scholar 

  172. Bettaieb A, Cremonini E, Kang H, Kang J, Haj FG, Oteiza PI (2016) Anti-inflammatory actions of (−)-epicatechin in the adipose tissue of obese mice. The Int J Biochem Cell Biol 81(Part B):383–392. https://doi.org/10.1016/j.biocel.2016.08.044

    Article  Google Scholar 

  173. Xu M, Sun M, Lu C, Han Y, Yao X, Niu X, Zhu Q (2020) Influence of epicatechin on oxidation-induced physicochemical and digestibility changes in porcine myofibrillar proteins during refrigerated storage. J Sci Food Agric 101(2):746–753. https://doi.org/10.1002/jsfa.10687

    Article  Google Scholar 

  174. Iñiguez-Franco F, Soto-Valdez H, Peralta E, Ayala-Zavala JF, Auras R, Gamez-Meza N (2012) Antioxidant Activity and Diffusion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(l-lactic acid). J Agric Food Chem 60(26):6515–6523. https://doi.org/10.1021/jf300668u

    Article  Google Scholar 

  175. Shariati S, Kalantar H, Pashmforoosh M, Mansouri E, Khodayar MJ (2019) Epicatechin protective effects on bleomycin-induced pulmonary oxidative stress and fibrosis in mice. Biomed Pharma 114(June 2019):108776. https://doi.org/10.1016/j.biopha.2019.108776

    Article  Google Scholar 

  176. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG (2000) Epicatechin in human plasma In vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 130(8):2109S-2114S. https://doi.org/10.1093/jn/130.8.2109S

    Article  Google Scholar 

  177. Josic J, Olsson AT, Wickeberg J, Lindstedt S, Hlebowicz J (2010) Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: A randomized controlled trial. Nutr J 9(63):1–8

    Google Scholar 

  178. Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2016) (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 599:13–21. https://doi.org/10.1016/j.abb.2016.03.006

    Article  Google Scholar 

  179. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    Article  Google Scholar 

  180. Galleano M, Bernatova I, Puzserova A, Balis P, Sestakova N, Pechanova O, Fraga CG (2013) (–)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life 65(8):710–715

    Article  Google Scholar 

  181. Lee Y-H, Kwak J, Choi H-K, Choi K-C, Kim S, Lee J, … Yoon H-G (2012) EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 30(1):69–74. https://doi.org/10.3892/ijmm.2012.966

  182. Siddique HR, Liao DJ, Mishra SK, Schuster T, Wang L, Matter B, … Saleem M (2012) Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int J Cancer 131(7):1720–1731. https://doi.org/10.1002/ijc.27409

  183. Rodriguez M, Du G-J, Wang C-Z, Yuan C-S (2010) Letter to the Editor: Panaxadiol’s Anticancer Activity is Enhanced by Epicatechin. Am J Chin Med 38(6):1233–1235. https://doi.org/10.1142/S0192415X10008597

    Article  Google Scholar 

  184. Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M (2015) Molecular mechanisms and therapeutic effects of (–)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid Med Cell Longev 2015:181260. https://doi.org/10.1155/2015/181260

    Article  Google Scholar 

  185. Li L, Ji H (2019) Protective effects of epicatechin on the oxidation and N-nitrosamine formation of oxidatively stressed myofibrillar protein. Int J Food Prop 22(1):186–197. https://doi.org/10.1080/10942912.2019.1578792

    Article  MathSciNet  Google Scholar 

  186. Kumar N, Vikas P (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4(December 2014):86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  Google Scholar 

  187. Tilay A, Bule M, Kishenkumar J, Annapure U (2008) Preparation of Ferulic Acid from Agricultural Wastes: Its Improved Extraction and Purification. J Agric Food Chem 56(17):7644–7648. https://doi.org/10.1021/jf801536t

    Article  Google Scholar 

  188. Lesage-Meessen L, Delattre M, Haon M, Thibault J-F, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50(2–3):107–113. https://doi.org/10.1016/0168-1656(96)01552-0

    Article  Google Scholar 

  189. Tang PL, Hassan O (2020) Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472. BMC Chemistry 14(7):1–11. https://doi.org/10.1186/s13065-020-0663-y

    Article  Google Scholar 

  190. Aragón-Gutiérrez A, Rosa E, Gallur M, López D, Hernández-Muñoz P, Gavara R (2020) Melt-Processed Bioactive EVOH Films Incorporated withFerulic Acid. Polymers 13(1):1–18. https://doi.org/10.3390/polym13010068

    Article  Google Scholar 

  191. Yu JY, Roh SH, Park HJ (2021) Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocolloids 111:106390. https://doi.org/10.1016/j.foodhyd.2020.106390

  192. Pluemsamran T, Onkoksoong T, Panich U (2012) Caffeic Acid and Ferulic Acid Inhibit UVA-Induced Matrix Metalloproteinase-1 through Regulation of Antioxidant Defense System in Keratinocyte HaCaT Cells. Photochem Photobiol 88(4):961–968. https://doi.org/10.1111/j.1751-1097.2012.01118.x

    Article  Google Scholar 

  193. Ambothi K, Nagarajan RP (2014) Ferulic acid prevents ultraviolet-B radiation induced oxidative DNA damage in human dermal fibroblasts. Int J Nutri, Pharmacol, Neurol Dis 4(4):203–213. https://doi.org/10.4103/2231-0738.139400

    Article  Google Scholar 

  194. Karimvand MN, Kalantar H, Khodayar MJ (2020) Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN). Jundishapur J Nat Pharma Prod 15(4):e81969. https://doi.org/10.5812/jjnpp.81969

    Article  Google Scholar 

  195. Gao J, Yu H, Guo W, Kong Y, Gu L, Li Q, … Wang Y (2018) The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int 18(102):1–9. https://doi.org/10.1186/s12935-018-0595-y

  196. Szulc-Kielbik I, Kielbik M, Klink M (2017) Ferulic acid but not alpha-lipoic acid effectively protects THP-1-derived macrophages from oxidant and pro-inflammatory response to LPS. Immunopharmacol Immunotoxicol 39(6):330–337. https://doi.org/10.1080/08923973.2017.1369100

    Article  Google Scholar 

  197. El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Helal SA (2018) Upregulation of PPAR-γ mediates the renoprotective effect of omega-3 PUFA and ferulic acid in gentamicin-intoxicated rats. Biomed Pharma 99(March 2018):504–510. https://doi.org/10.1016/j.biopha.2018.01.036

    Article  Google Scholar 

  198. Sangeeta D, Digvijay S, Pradeep TD, Rupesh S, Rahul T (2015) Healing potential of ferulic acid on dermal wound in diabetic animals. Asian J Mole Model 1:1–16

    Google Scholar 

  199. Oresajo C, Stephens T, Hino PD (2008) Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin. J Cosmet Dermatol 7(4):290–297. https://doi.org/10.1111/j.1473-2165.2008.00408.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alejandro Florez and Ana Lucía Rengifo for your comments and advice during the writing of this document.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

LL and CA designed and structure the review; AP wrote the review; CR and GB critical review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anna M. Polanía.

Ethics declarations

Consent for publication

All the authors have approved the consent for publishing the manuscript.

Ethics approval and consent to participate

All the authors have read and agreed the ethics for publishing the manuscript.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The use of pineapple waste is a great alternative to mitigate current environmental problems.

• Green extraction technologies (ultrasound, microwave, liquid or solid fermentation) are of great interest due to the good yields of bioactive compounds obtained.

• The bioactive compounds present high antioxidant, anti-inflammatory, antifungal and anticancer activity.

• The bioactive compounds identified in pineapple by-products can be applied in food products or used in the development of pharmacological or cosmetic products.

• One of the most studied compounds is gallic acid, which has demonstrated excellent metabolic and anti-inflammatory effects, and has been used as an additive to develop edible coatings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polanía, A.M., Londoño, L., Ramírez, C. et al. Valorization of pineapple waste as novel source of nutraceuticals and biofunctional compounds. Biomass Conv. Bioref. 13, 3593–3618 (2023). https://doi.org/10.1007/s13399-022-02811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02811-8

Keywords

Navigation