Skip to main content
Log in

Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the effects of microwave, ultrasound and the combination of ultrasound-microwave on the extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit were investigated. The effects of ultrasound treatment time, ultrasound power, microwave power (MP) and microwave treatment time on total phenolic content were investigated. Moreover, antioxidant activities (AA), pH values, total monomeric anthocyanin contents (TMAC), polymeric colour, colour density, polymeric colour ratio, vitamin C content, and concentrations of some of the phenolic compounds of extracts were also examined. In microwave-assisted extractions, the highest TPC (71.52 ± 4.16 mg GAE/g dry matter) was obtained when the samples were extracted at 360 W MP for 15 min at a solid:solvent ratio of 5:100. For ultrasound-assisted extraction (UAE), the conditions that gave the highest TPC value (54.55 ± 4.11 mg GAE/g dry matter) were 30 min extraction time, 35 W power, and 5:100 solid:solvent ratio. The process conditions of ultrasound-microwave combination extraction (UMAE), resulted in the highest TPC (72.03 ± 0.90 mg GAE/g dry matter) and AA (21.28 ± 0.60 mg DPPH/g dry matter), were found as 10 min microwave treatment at 180 W and 30 min ultrasound treatment at 35 W. The highest vitamin C content (166.60 mg ascorbic acid/100 g dry matter) was obtained in UAE process. The UMAE extracts, which provided 94.4% time-saving compared to maceration, had comparable TPC, higher AA, and higher (−) epicatechine and rutin contents. The bands found in the FTIR spectrum were detected to be associated with chlorogenic acid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Dinc, D. Aslan, N.C. İçyer, M. Çam, Electron. J. Food Technol. 7(2), 1–11 (2012)

    Google Scholar 

  2. L. Cesoniene, R. Daubaras, P. Viskelis, A. Sarkinas, Plant Foods Hum. Nutr. 67(3), 256–261 (2012). https://doi.org/10.1007/s11130-012-0303-3

    Article  CAS  PubMed  Google Scholar 

  3. O. Rop, V. Reznicek, M. Valsikova, T. Jurikova, J. Mlcek, D. Kramarova, Molecules 15(6), 4467–4477 (2010). https://doi.org/10.3390/molecules15064467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Soylak, L. Elci, S. Saracoglu, U. Divrikli, Asian J. Chem. 14(1), 135–138 (2002)

    CAS  Google Scholar 

  5. A.A. Karaçelik, M. Küçük, Z. İskefiyeli, S. Aydemir, S. De Smet, B. Misereze, P. Sandrae, Food Chem. 175, 106–114 (2015). https://doi.org/10.1016/j.foodchem.2014.11.085

    Article  CAS  PubMed  Google Scholar 

  6. T.H. Barak, E. Celep, Y. İnan, E. Yesilada, Ind. Crops Prod. 131, 62–69 (2019). https://doi.org/10.1016/j.indcrop.2019.01.037

    Article  CAS  Google Scholar 

  7. E. Durmaz, G. Sumnu, S. Sahin, Sep. Sci. Technol. 50(13), 1986–1992 (2015). https://doi.org/10.1080/01496395.2014.995189

    Article  CAS  Google Scholar 

  8. F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540–560 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  9. S. Peiró, E. Luengo, F. Segovia, J. Raso, M.P. Almajano, Waste Biomass Valoriz. 10(4), 889–897 (2019). https://doi.org/10.1007/s12649-017-0116-6

    Article  CAS  Google Scholar 

  10. J. Pinela, M.A. Prieto, L. Barros, A.M. Carvalho, M.B.P. Oliveira, J.A. Saraiva, I.C.F.R. Ferreira, Sep. Purif. Technol. 192, 501–512 (2018). https://doi.org/10.1016/j.seppur.2017.10.007

    Article  CAS  Google Scholar 

  11. F. Dahmoune, B. Nayak, K. Moussi, H. Remini, K. Madani, Food Chem. 166, 585–595 (2015). https://doi.org/10.1016/j.foodchem.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  12. M. Gallo, R. Ferracane, G. Graziani, A. Ritieni, V. Fogliano, Molecules 15(9), 6365–6374 (2010). https://doi.org/10.3390/molecules15096365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Flórez, E. Conde, H. Domínguez, J. Chem. Technol. Biotechnol. 90(4), 590–607 (2015). https://doi.org/10.1002/jctb.4519

    Article  CAS  Google Scholar 

  14. M.B. Hossain, N.P. Brunton, A. Patras, B. Tiwari, C.P. O’Donell, Ultrason. Sonochem. 19, 582–590 (2012). https://doi.org/10.1016/j.ultsonch.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  15. L. Sillero, R. Prado, J. Labidi, Chem. Eng. Process. Process Intensif. 156, 108100 (2020). https://doi.org/10.1016/j.cep.2020.108100

    Article  CAS  Google Scholar 

  16. H. Sun, C. Li, Y. Ni, L. Yao, H. Jiang, X. Ren, Y. Fu, C. Zhao, Carbohydr. Polym. 206, 557–564 (2019). https://doi.org/10.1016/j.carbpol.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  17. L. Wen, Z. Zhang, D.W. Sun, S.P. Sivagnanam, B.K. Tiwari, Crit. Rev. Food Sci. Nutr. 60(11), 1826–1841 (2020). https://doi.org/10.1080/10408398.2019.1602823

    Article  CAS  PubMed  Google Scholar 

  18. M. Singla, N. Sit, Ultrason. Sonochem. 73, 105506 (2021). https://doi.org/10.1016/j.ultsonch.2021.105506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Vinatoru, T.J. Mason, I. Calinescu, Trac-Trend Anal. Chem. 97, 159–178 (2017). https://doi.org/10.1016/j.trac.2017.09.002

    Article  CAS  Google Scholar 

  20. A. Elik, D.K. Yanik, F. Göğüş, Rom. Biotechnol. Lett. 24(1), 30–40 (2019)

    Article  CAS  Google Scholar 

  21. K. Roberts, A. Diop, A. St-Pierre, M. Tardif, A. Vialle, S. Barnabé, Ind. Biotechnol. 15(3), 202–211 (2019). https://doi.org/10.1089/ind.2019.0009

    Article  CAS  Google Scholar 

  22. M. Vázquez-Espinosa, E. Espada-Bellido, A.V. González de Peredo, M. Ferreiro-González, C. Carrera, M. Palma, C.G. Barroso, F.G. Barbero, Agronomy 8(11), 240 (2018). https://doi.org/10.3390/agronomy8110240

    Article  CAS  Google Scholar 

  23. M. Vázquez-Espinosa, A.V.G. de Peredo, M. Ferreiro-González, C. Carrera, M. Palma, G.F. Barbero, E. Espada-Bellido, Agronomy 9(3), 148 (2019). https://doi.org/10.3390/agronomy9030148

    Article  CAS  Google Scholar 

  24. S. Chen, Z. Zeng, N.A. Hu, B.O. Bai, H. Wang, Y. Suo, Food Chem. 242, 1–8 (2018). https://doi.org/10.1016/j.foodchem.2017.08.105

    Article  CAS  PubMed  Google Scholar 

  25. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  26. W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, LWT Food Sci. Technol. 28(1), 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  27. N. Kutlu, A. Isci, O. Sakiyan, A.E. Yilmaz, J. Food Process. Preserv. 45(10), 15818 (2021). https://doi.org/10.1111/jfpp.15818

    Article  CAS  Google Scholar 

  28. X. Cao, Y. Zhang, F. Zhang, Y. Wang, J. Yi, X. Liao, J. Sci. Food Agric. 91(5), 877–885 (2011). https://doi.org/10.1002/jsfa.4260

    Article  CAS  PubMed  Google Scholar 

  29. L.F. Reyes, J.E. Villarreal, L. Cisneros-Zevallos, Food Chem. 101(3), 1254–1262 (2007). https://doi.org/10.1016/j.foodchem.2006.03.032

    Article  CAS  Google Scholar 

  30. H. Baltacıoğlu, C. Baltacıoğlu, I. Okur, A. Tanrıvermiş, M. Yalıç, Vib. Spectrosc. 113, 103204 (2021). https://doi.org/10.1016/j.vibspec.2020.103204

    Article  CAS  Google Scholar 

  31. D. Polka, A. Podsędek, M. Koziołkiewicz, Plant Foods Hum. Nutr. 74(3), 436–442 (2019). https://doi.org/10.1007/s11130-019-00759-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Cam, Determination of organic acids and phenolic compounds by high pressure liquid chromatography in gilaburu (Viburnum opulus) fruit juice consumed in Kayseri region, Master Thesis, (Ege University, İzmir, 2005), p. 40

  33. M. Gfrerer, E. Lankmayr, Anal. Chim. Acta 533, 203–211 (2005). https://doi.org/10.1016/j.aca.2004.11.016

    Article  CAS  Google Scholar 

  34. J.P. Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Carbohydr. Polym. 101, 786–791 (2014). https://doi.org/10.1016/j.carbpol.2013.09.062

    Article  CAS  Google Scholar 

  35. K. Kaderides, L. Papaoikonomou, M. Serafim, A.M. Goula, Chem. Eng. Process. Process Intensif. 137, 1–11 (2019). https://doi.org/10.1016/j.cep.2019.01.006

    Article  CAS  Google Scholar 

  36. B. Nayak, F. Dahmoune, K. Moussi, H. Remini, S. Dairi, O. Aoun, M. Khodir, Food Chem. 187, 507–516 (2015). https://doi.org/10.1016/j.foodchem.2015.04.081

    Article  CAS  PubMed  Google Scholar 

  37. P. Shao, J. He, P. Sun, P. Zhao, J. Food Sci. Technol. 49(1), 66–73 (2012). https://doi.org/10.1007/s13197-011-0265-8

    Article  PubMed  Google Scholar 

  38. A.E. İnce, S. Şahin, S.G. Sumnu, Turk. J. Agric. For. 37(1), 69–75 (2013)

    Google Scholar 

  39. T.S. Ballard, P. Mallikarjunan, K. Zhou, S. O’Keefe, Food Chem. 120, 1185–1192 (2010). https://doi.org/10.1016/j.foodchem.2009.11.063

    Article  CAS  Google Scholar 

  40. Y.Q. Ma, J.C. Chen, D.H. Liu, X.Q. Ye, Ultrason. Sonochem. 16(1), 57–62 (2009). https://doi.org/10.1016/j.ultsonch.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  41. S. Sayyar, Z.Z. Abidin, R. Yunus, A. Muhammed, Am. J. Appl. Sci. 6(7), 1390–1395 (2009)

    Article  Google Scholar 

  42. P. Jha, A.J. Das, S.C. Deka, J. Food Sci. Technol. 54(12), 3847–3858 (2017). https://doi.org/10.1007/s13197-017-2832-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S.Q. Liew, G.C. Ngoh, R. Yusoff, W.H. Teoh, Int. J. Biol. Macromol. 93, 426–435 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.065

    Article  CAS  PubMed  Google Scholar 

  44. X.L. Cheng, J.Y. Wan, P. Li, L.W. Qi, J. Chromatogr. A 1218(34), 5774–5786 (2011). https://doi.org/10.1016/j.chroma.2011.06.091

    Article  CAS  PubMed  Google Scholar 

  45. A.E. Ince, S. Sahin, G. Sumnu, J. Food Sci. Technol. 51(10), 2776–2782 (2014). https://doi.org/10.1007/s13197-012-0828-3

    Article  CAS  PubMed  Google Scholar 

  46. C. Proestos, M. Komaitis, J. Food Qual. 29(5), 567–582 (2006). https://doi.org/10.1111/j.1745-4557.2006.00096.x

    Article  CAS  Google Scholar 

  47. W. Dong, Q. Chen, C. Wei, R. Hu, Y. Long, Y. Zong, Z. Chu, Ultrason. Sonochem. 74, 105578 (2021). https://doi.org/10.1016/j.ultsonch.2021.105578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. K. Carbone, V. Macchioni, G. Petrella, D.O. Cicero, Ind. Crops Prod. 156, 112888 (2020). https://doi.org/10.1016/j.indcrop.2020.112888

    Article  CAS  Google Scholar 

  49. Q.V. Vuong, S. Hiruna, P.D. Roach, M.C. Bowyer, P.A. Phillips, C.J. Scarlett, J. Herbal Med. 3, 104–111 (2013). https://doi.org/10.1016/j.hermed.2013.04.004

    Article  Google Scholar 

  50. D. Wu, T. Gao, H. Yang, Y. Du, C. Li, L. Wei, T. Zhou, J. Lu, H. Bi, Ind. Crops Prod. 66, 229–238 (2015). https://doi.org/10.1016/j.indcrop.2014.12.054

    Article  CAS  Google Scholar 

  51. X. Wang, M.J. Peng, Z.H. Wang, Q.L. Yang, S. Peng, Arch. Biol. Sci. 72(2), 211–221 (2020). https://doi.org/10.2298/ABS191216015W

    Article  Google Scholar 

  52. H.K. Ravi, C. Breil, M.A. Vian, F. Chemat, P.R. Venskutonis, ACS Sustain. Chem. Eng. 6(3), 4185–4193 (2018). https://doi.org/10.1021/acssuschemeng.7b04592

    Article  CAS  Google Scholar 

  53. Y. Liu, Y. Liu, C. Tao, M. Liu, Y. Pan, Z. Lv, J. Food Meas. Charact. 12(3), 1744–1753 (2018). https://doi.org/10.1007/s11694-018-9789-1

    Article  Google Scholar 

  54. N. Kutlu, A. Isci, O. Sakiyan, A.E. Yilmaz, Food Bioprocess Technol. 14(4), 650–664 (2021). https://doi.org/10.1007/s11947-021-02588-0

    Article  CAS  Google Scholar 

  55. M. Algarra, A. Fernandes, N. Mateus, V. de Freitas, J.C.E. da Silva, J. Casado, J. Food Compos. Anal. 33(1), 71–76 (2014). https://doi.org/10.1016/j.jfca.2013.11.005

    Article  CAS  Google Scholar 

  56. M. Kumar, A. Dahuja, A. Sachdev, C. Kaur, E. Varghese, S. Saha, K.V.S.S.J. Sairam, Food Sci. Technol. 56(2), 995–1007 (2019). https://doi.org/10.1007/s13197-018-03566-9

    Article  CAS  Google Scholar 

  57. W. Tchabo, Y. Ma, F.N. Engmann, H. Zhang, Ind. Crops Prod. 63, 214–225 (2015). https://doi.org/10.1016/j.indcrop.2014.09.053

    Article  CAS  Google Scholar 

  58. M. Türkyılmaz, M. Özkan, Int. J. Food Sci. Technol. 47(11), 2273–2281 (2012). https://doi.org/10.1111/j.1365-2621.2012.03098.x

    Article  CAS  Google Scholar 

  59. M.M. Giusti, R.E. Wrolstad, in Handbook of Food Analytical Chemistry. ed. by R.E. Wrolstad, T.E. Acree, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F. Shoemaker, D.M. Smith, P. Sporns (Wiley, New York, 2005), pp. 19–31

    Google Scholar 

  60. A. Michalska, G. Lysiak, Int. J. Mol. Sci. 16, 18642–18663 (2015). https://doi.org/10.3390/ijms160818642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. Kumar, A. Dahuja, A. Sachdev, C. Kaur, E. Varghese, S. Saha, K.V.S.S. Sairam, Int. J. Biol. Macromol. 135, 1070–1081 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.034

    Article  CAS  PubMed  Google Scholar 

  62. G. Ozkan, A.S. Stübler, K. Aganovic, G. Dräger, T. Esatbeyoglu, E. Capanoglu, Food Chem. 360, 129918 (2021). https://doi.org/10.1016/j.foodchem.2021.129918

    Article  CAS  PubMed  Google Scholar 

  63. D. Nowak, M. Gośliński, E. Wojtowicz, K. Przygoński, J. Food Sci. 83(8), 2237–2246 (2018). https://doi.org/10.1111/1750-3841.14284

    Article  CAS  PubMed  Google Scholar 

  64. S. Plazzotta, R. Ibarz, L. Manzocco, O. Martín-Belloso, Ultrason. Sonochem. 63, 104954 (2020). https://doi.org/10.1016/j.ultsonch.2019.104954

    Article  CAS  PubMed  Google Scholar 

  65. A. Rawson, B.K. Tiwari, A. Patras, N. Brunton, C. Brennan, P.J. Cullen, C. O’donnell, Food Res. Int. 44(5), 1168–1173 (2011). https://doi.org/10.1016/j.foodres.2010.07.005

    Article  CAS  Google Scholar 

  66. R.A. Oral, M. Doǧan, K. Sarioǧlu, J. Liq. Chromatogr. Relat. Technol. 37, 1827–1836 (2014). https://doi.org/10.1080/10826076.2013.825843

    Article  CAS  Google Scholar 

  67. S.Y. Velioglu, L. Ekici, E.S. Poyrazoglu, Int. J. Food Sci. Technol. 41(9), 1011–1015 (2006). https://doi.org/10.1111/j.1365-2621.2006.01142.x

    Article  CAS  Google Scholar 

  68. K. Ozrenk, G. Ilhan, H.I. Sagbas, N. Karatas, S. Ercisli, A.M. Colak, Sci. Hortic. 273, 109611 (2020). https://doi.org/10.1016/j.scienta.2020.109611

    Article  CAS  Google Scholar 

  69. I.T. Karabegovic, S.S. Stojicevic, D.T. Velickovic, Z.B. Todorovic, N.C. Nikolic, M.L. Lazic, Ind. Crops Prod. 54, 142–148 (2014). https://doi.org/10.1016/j.indcrop.2013.12.047

    Article  CAS  Google Scholar 

  70. A. Chahyadi, Saudi Pharm. J. 28(11), 1466–1473 (2020). https://doi.org/10.1016/j.jsps.2020.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. H.F. Zhang, X.H. Yang, Y. Wang, Trends Food Sci. Technol. 22(12), 672–688 (2011). https://doi.org/10.1016/j.tifs.2011.07.003

    Article  CAS  Google Scholar 

  72. İ Okur, C. Baltacıoğlu, E. Ağçam, H. Baltacıoğlu, H. Alpas, Waste Biomass Valoriz. 10(12), 3545–3555 (2019). https://doi.org/10.1007/s12649-019-00771-1

    Article  CAS  Google Scholar 

  73. L. Andronie, I. Pop, A. Rotaru, R. Sobolu, I. Baltă, A. Coroian, A.L. Longodor, Z. Marchiş, Sci. Pap. Ser. B Hortic. 64(1), 623–627 (2020)

    Google Scholar 

  74. N.S. Thakur, A. Thakur, LWT J. Food Sci. Technol. 133, 110077 (2020). https://doi.org/10.1016/j.lwt.2020.110077

    Article  CAS  Google Scholar 

  75. K. Samborska, P. Kaminska, A. Jedlinska, A. Matwijczuk, A. Kaminska-Dwórznicka, Appl. Sci. 8(7), 1082 (2018). https://doi.org/10.3390/app8071082

    Article  CAS  Google Scholar 

  76. N. Ramamurthy, S. Kannan, Rom. J. Biophys. 17(4), 269–276 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

LC MS-MS analysis was performed in METU Central Laboratory, Molecular Biology-Biotechnology Research and Development Center, Mass Spectroscopy Laboratory, Ankara, Turkey.

Funding

This study was funded by Ankara University, Ankara, Turkey through BAP project no 16L0443009.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YÖA, ÖŞ, and Aİ; methodology, YÖA, ÖŞ, and Aİ; software, YÖA; formal analysis, YÖA; investigation, YÖA; resources, ÖŞ; data curation, ÖŞ; writing—original draft preparation, YÖA; writing—review, and editing, ÖŞ and Aİ; visualization, YÖA; supervision, ÖŞ and Aİ; project administration, ÖŞ; funding acquisition, ÖŞ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Özge Şakıyan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifakı, Y.Ö., Şakıyan, Ö. & Isci, A. Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods. Food Measure 16, 4009–4024 (2022). https://doi.org/10.1007/s11694-022-01498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01498-9

Keywords

Navigation