Skip to main content
Log in

Continuous microwave-assisted step-by-step extraction of bioactive water-soluble materials and fucoidan from brown seaweed Undaria pinnatifida waste

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Continuous extraction production process by microwave-assisted extraction (MAE) using brown macroalgae Undaria pinnatifida waste was investigated to obtain proteins and a sulfated polysaccharide, fucoidan, at low (55–160 °C) and high (150–170 °C) temperatures. At the lower temperatures, protein extraction increased with increasing extraction condition severity. All extracted proteins exhibited angiotensin-converting enzyme inhibitory activity. The proteins extracted at 100 and 120 °C for 20 and 5 min, respectively, displayed the highest activities (evaluated as IC50 of protein concentration), which were 0.03 and 0.05 g/L, respectively. Subsequently, the highest fucoidan yields were attained after extraction at 150 °C for 30 min (12.3% based on the raw material) during the higher temperature extraction process. The yield was equivalent to that extracted directly by the MAE treatment (without treatment at a lower temperature). The results indicated that the continuous extraction of protein and fucoidan using MAE is possible. Moreover, U. pinnatifida waste could potentially be used as feedstock to provide valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi H, Kim SH, Kim IH (2019) Effect of dietary inclusion of fermented sea mustard by-products on growth performance, blood profiles, and meat quality in broilers. J Sci Food Agric 99:4304–4308. https://doi.org/10.1002/jsfa.9663

    Article  CAS  PubMed  Google Scholar 

  2. Shimazu T, Borjigin L, Katoh K, Roh SG, Kitazawa H, Abe K, Suda Y, Saito H, Kunii H, Nihei K, Uemoto Y, Aso H, Suzuki K (2019) Addition of wakame seaweed (Undaria pinnatifida) stalk to animal feed enhances immune response and improves intestinal microflora in pigs. Anim Sci J 90:1248–1260. https://doi.org/10.1111/asj.13274

    Article  CAS  PubMed  Google Scholar 

  3. Yin S, Shibata M, Hagiwara T (2019) Extraction of bioactive compounds from stems of Undaria pinnatifida. Food Sci Technol Res 25:765–773. https://doi.org/10.3136/fstr.25.765

    Article  CAS  Google Scholar 

  4. Wu L, Sun J, Su XT, Yu QL, Yu QY, Zhang P (2016) A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym 154:96–111. https://doi.org/10.1016/j.carbpol.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  5. Wijesinghe WAJP, Athukorala Y, Jeon YJ (2011) Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats. Carbohydr Polym 86:917–921. https://doi.org/10.1016/j.carbpol.2011.05.047

    Article  CAS  Google Scholar 

  6. Synytsya A, Kim WJ, Kim SM, Pohl R, Synytsya A, Kvasnička F, Čopíková J, Il Park Y (2010) Structure and antitumor activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81:41–48. https://doi.org/10.1016/j.carbpol.2010.01.052

    Article  CAS  Google Scholar 

  7. Ibtissam C, Hassane R, Martinezlopez J, Seglar JFD, Vidal JAG, Hassan B, Mohamed K (2009) Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. Afr J Biotechnol 8:1258–1262

    Google Scholar 

  8. Li CM, Gao YL, Xing YL, Zhu HB, Shen JY, Tian JW (2011) Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats by regulating the inflammatory response. Food Chem Toxicol 49:2090–2095. https://doi.org/10.1016/j.fct.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  9. Hifney AF, Fawzy MA, Abdel-Gawad KM, Gomaa M (2016) Industrial optimization of fucoidan extraction from Sargassum sp., and its potential antioxidant and emulsifying activities. Food Hydrocoll 54:77–88. https://doi.org/10.1016/j.foodhyd.2015.09.022

    Article  CAS  Google Scholar 

  10. Pavlicevic M, Maestri E, Marmiroli M (2020) Marine bioactive peptides—an overview of generation, structure and application with a focus on food sources. Mar Drugs 18:424. https://doi.org/10.3390/md18080424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng LH, Wang YJ, Sheng J, Wang F, Zheng Y, Lin XK, Sun M (2011) Antitumor peptides from marine organisms. Mar Drugs 9:1840–1859. https://doi.org/10.3390/md9101840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu JC, Lin LC, Tzen JT, Chen JY (2011) Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides 32:900–910. https://doi.org/10.1016/j.peptides.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  13. Harnedy-Rothwell PA, McLaughlin CM, O’Keeffe MB, Le Gouic AV, Allsopp PJ, McSorley EM, Sharkey S, Whooley J, McGovern B, O’Harte FPM, FitzGerald RJ (2020) Identification and characterization of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Res Int 131:108989. https://doi.org/10.1016/j.foodres.2020.108989

    Article  CAS  PubMed  Google Scholar 

  14. Hong H, Zheng Y, Song S, Zhang Y, Zhang C, Liu J, Luo Y (2020) Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Biosci 38. https://doi.org/10.1016/j.fbio.2020.100748, 100748

  15. Balti R, Bougatef A, Sila A, Guillochon D, Dhulster P, Nedjar-Arroume N (2015) Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem 170:519–525. https://doi.org/10.1016/j.foodchem.2013.03.091

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki C, Tamura S, Tohse R, Fujita S, Kikuchi M, Asada C, Nakamura Y (2019) Isolation and identification of an angiotensin I-converting enzyme inhibitor peptide from pearl oyster (Pinctada fucata) shell protein hydrolysate. Process Biochem 77:137–142. https://doi.org/10.1016/j.procbio.2018.11.017

    Article  CAS  Google Scholar 

  17. Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci 83:6–16. https://doi.org/10.1111/1750-3841.14011

    Article  CAS  PubMed  Google Scholar 

  18. Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252. https://doi.org/10.1021/jf020482t

    Article  CAS  PubMed  Google Scholar 

  19. Sato M, Oba T, Yamaguchi T, Nakano T, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) Antihypertensive effects of hydrolysates of wakame (Undaria pinnatifida) and their angiotensin-I-converting enzyme inhibitory activity. Ann Nutr Metab 46:259–267. https://doi.org/10.1159/000066495

    Article  CAS  PubMed  Google Scholar 

  20. Saito M, Hagino H (2005) Antihypertensive effect of oligopeptides derived from Nori (Porphyra yezoensis) and Ala–Lys–Tyr–Ser–Tyr in rat. Jpn Soc Nutr Food Sci 58:177–184 (in Japanese)

    Article  CAS  Google Scholar 

  21. Lafarga T, Acién-Fernández FG, Garcia-Vaquero MG (2020) Bioactive peptides and carbohydrate from seaweed for food applications: natural occurrence, isolation, purification, and identification. Algal Res 48.

  22. Jung S, Lamsal BP, Stepien V, Johnson LA, Murphy PA (2006) Functionality of soy protein produced by enzyme-assisted extraction. J Am Oil Chem Soc 83:71–78. https://doi.org/10.1007/s11746-006-1178-y

    Article  CAS  Google Scholar 

  23. Pojić M, Mišan A, Tiwari B (2018) Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 75:93–104. https://doi.org/10.1016/j.tifs.2018.03.010

    Article  CAS  Google Scholar 

  24. Yuan Y, Macquarrie D (2015) Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 129:101–107. https://doi.org/10.1016/j.carbpol.2015.04.057

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 86:1137–1144. https://doi.org/10.1016/j.carbpol.2011.06.006

    Article  CAS  Google Scholar 

  26. Dobrinčić A, Pedisić S, Zorić Z, Jurin M, Roje M, Čož-Rakovac R, Dragović-Uzelac V (2021) Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from Fucus virsoides and Cystoseira barbata. Foods 10:1481. https://doi.org/10.3390/foods10071481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li M, Shanwei X, Zhang Y, Li X (2018) Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. Food Sci Technol 98:358–365. https://doi.org/10.1016/j.lwt.2018.08.045

    Article  CAS  Google Scholar 

  28. Hall F, Liceaga A (2020) Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J Funct Foods 64. https://doi.org/10.1016/j.jff.2019.103634, 103634

  29. Yuan Y, Macquarrie DJ (2015) Microwave-assisted step-by-step process for the production of fucoidan, alginate sodium, sugars, and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour Technol 198:819–827. https://doi.org/10.1016/j.biortech.2015.09.090

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson M, Glasson CRK, Vucko MJ, Angell A, Neoh TL, de Nys R (2019) Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Res 41 https://doi.org/10.1016/j.algal.2019.101555, 101555

  31. AOAC (2000) Official methods of analysis of the AOAC (17th ed.)

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass, NREL Technical Report July 2011, NREL/TP-510–42618, vol 1, 0.7.08.2011 version

  34. Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith PA (1956) Colorimetric method for determination of sugars and related substrates. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  35. Silvestri LJ, Hurst RE, Simpson L, Settine JM (1982) Analysis of sulfate in complex carbohydrates. Anal Biochem 123:303–309. https://doi.org/10.1016/0003-2697(82)90450-x

    Article  CAS  PubMed  Google Scholar 

  36. Friedland J, Silverstein E (1977) A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am J Clin Pathol 66:416–424. https://doi.org/10.1093/ajcp/68.2.225

    Article  Google Scholar 

  37. Franca-Oliveira G, Fornari T, Hernández-Ledesma B (2021) A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches. Processes 9:1626. https://doi.org/10.3390/pr9091626

    Article  CAS  Google Scholar 

  38. Chemat F, Zill-e-Huma Z, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  39. Morimoto M, Takatori M, Hayashi T, Mori D, Takashima O, Yoshida S, Sato K, Kawamoto H, Tamura J, Izawa H, Ifuku S, Saimoto H (2014) Depolymerization of sulfated polysaccharides under hydrothermal conditions. Carbohydr Res 384:56–60. https://doi.org/10.1016/j.carres.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  40. Saravana PS, Cho YN, Patil MP, Cho YJ, Kim GD, Park YB, Woo HC, Chun BS (2018) Hydrothermal degradation of seaweed polysaccharide: characterization and biological activities. Food Chem 268:179–187. https://doi.org/10.1016/j.foodchem.2018.06.077

    Article  CAS  PubMed  Google Scholar 

  41. Suetsuna K, Maekawa K, Chen JR (2004) Antihypersensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15:267–272. https://doi.org/10.1016/j.jnutbio.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  42. Auestad N, Layman DK (2021) Dairy bioactive proteins and peptides:a narrative review. Nutrition Rev 79:36–47. https://doi.org/10.1093/nutrit/nuab097

    Article  Google Scholar 

  43. Echave J, Fraga-Corral M, Garcia-Perez P, Popović-Djordjević J, Avdović H, Radulović Xiao Prieto Simal-Gandara MJMAJ (2021) Seaweed protein hydrolysates and bioactive peptides: extraction, purification, and applications. Mar Drugs 19:500. https://doi.org/10.3390/md19090500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Machu L, Misurcova L, Ambrozova JV, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133. https://doi.org/10.3390/molecules20011118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaharudin N, Salmeán AA, Dragsted LO (2018) inhibitory effects of edible seaweeds, Polyphenolics, and alginates on the activities of porcine pancreatic α-amylase. Food Chem 245:1196–1203. https://doi.org/10.1016/j.foodchem.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  46. Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L (2020) Seaweed phenolics: from extraction to applications. Mar Drugs 18:384. https://doi.org/10.3390/md18080384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soria AC, Ruiz-Aceituno L, Ramos L, Sanz LM (2015) Microwave-assisted extraction of polysaccharides. Polysaccharides:987–1008

  48. Jia Y, YBJY, (2009) Research on extracting technique of fucoidan from Undaria pinnatifida. Chin Mod Med 16:69

    Google Scholar 

  49. Duarte MER, Cardoso MA, Noseda MD, Cerezo AS (2001) Structural studies on fucoidan from the brown seaweed Sargassum stenophyllum. Carbohydr Res 333:281–293. https://doi.org/10.1016/S0008-6215(01)00149-5

    Article  CAS  PubMed  Google Scholar 

  50. Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG (2011) An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro. J Nat Prod 74:1851–1861. https://doi.org/10.1021/np200124m

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Zhang Q, Zhang Z, Song H, Li P (2010) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol 46:6–12. https://doi.org/10.1016/j.ijbiomac.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  52. Cho ML, Lee BY, You SG (2010) Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 16:291–297. https://doi.org/10.3390/molecules16010291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C (2000) Relationship between sulfate groups and biological activities of fucans. Thromb Res 100:453–459. https://doi.org/10.1016/S0049-3848(00)00338-8

    Article  CAS  PubMed  Google Scholar 

  54. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695. https://doi.org/10.3390/molecules13081671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li B, Zhao RX, Wei XJ (2008) Anticoagulant activity of fucoidan from Hizikia fusiforme. Agro Food Ind Hi Tech 19:22–24

    Google Scholar 

  56. Zvyagintseva TN, Shevchenko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV (2003) Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Exp Mar Biol Ecol 294:1–13. https://doi.org/10.1016/S0022-0981(03)00244-2

    Article  CAS  Google Scholar 

  57. Mak W, Hamid N, Liu T, Lu J, White WL (2013) Fucoidan from New Zealand Undaria pinnatifida:monthly variations and determination of antioxidant activities. Carbohydr Polym 95:606–614. https://doi.org/10.1016/j.carbpol.2013.02.047

    Article  CAS  PubMed  Google Scholar 

  58. Koh HAS, Lu J, Zhou W (2019) Structure characterization and antiozidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydr Polym 212:178–185. https://doi.org/10.1016/j.carbpol.2019.02.040

    Article  CAS  PubMed  Google Scholar 

  59. Arijión M, Ponce NMA, Solana V, Dellatorre FG, Latour EA, Stortz CA (2021) Monthly fluctuations in the content and monosaccharide composition of fucoidan from Undaria pinnatafida sporophylls from northern Patagonia. J Appl Phycol 33:2433–2441. https://doi.org/10.1007/s10811-021-02465-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge provision of U. pinnatifida seaweed waste from Tokushima Prefectural Industrial Technology Center (Ms. Ryoko Yoshimoto) and Tokushima Agriculture, Forestry, and Fisheries Technology Support Center (Ms. Mika Nii).

Funding

The authors would like to acknowledge the partial financial support provided by the Urakami Foundation for Food and Food Culture Promotion and the Tojuro Iijima Foundation for Food Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The roles are shown as follows: conceptualization: C. Sasaki; methodology: all of authors; FORMAL analysis and investigation: S. Tamura, J. Hayashi, M. Suzuki, K. Etomi, and N. Nii; writing—original draft preparation: C. Sasaki; writing—review and editing: C. Sasaki; funding acquisition: C. Sasaki, K. Kanemaru; supervision: C. Sasaki, K. Kanemaru. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chizuru Sasaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, C., Tamura, S., Suzuki, M. et al. Continuous microwave-assisted step-by-step extraction of bioactive water-soluble materials and fucoidan from brown seaweed Undaria pinnatifida waste. Biomass Conv. Bioref. 14, 7673–7682 (2024). https://doi.org/10.1007/s13399-022-03035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03035-6

Keywords

Navigation