Skip to main content
Log in

Microalgae cell disruption and lipid composition and recovery improvements induced by algicidal effects of bacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Converting microalgal lipids into biodiesel is considered a promising route in the field of biofuel production. However, the cost of microalgae-based biodiesel is still too high to be economically feasible, especially economical and effective methods for microalgae cell wall breaking are still lacking. In this study, five algicidal bacteria and their cell-free supernatant were evaluated by the percentage of cell disruption and lipid extraction of Chlorella sp.. Results showed that both bacteria and supernatant could induce cell disruption of Chlorella sp. to release lipids. Among them, the supernatant of Aeromonas hydrophila showed the best effects both in terms of the percentage of cell disruption and lipid extraction, and the cell disruption percentage increased with the extension of co-culture time with A. hydrophila supernatant. The inoculation volume of co-culture (A. hydrophila cell-free supernatant and Chlorella sp.) was explored, indicating that 10% volume ratio of A. hydrophila supernatant was identified as optimal proportion to improve lipid extraction. In addition, A. hydrophila supernatant showed obvious effects on the composition distribution of lipids extracted from Chlorella sp. that the fraction of unsaturated fatty acids decreased apparently, which would be beneficial to biodiesel production. The mechanism of microalgal cell disruption by A. hydrophila supernatant was further studied by scanning electron microscopy, ROS levels and antioxidant responses. This indicated that the cell morphology of Chlorella sp. changed dramatically with the time of co-culture with A. hydrophila supernatant.. These findings implied that algicidal properties of bacteria components are a promising tool for microalga cell disruption and lipid recovery, providing a new insight into the method for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Alhattab M, Kermanshahi-Pour A, Brooks MS-L (2019) Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol 31:61–88

    Article  Google Scholar 

  • Barati B, Zafar FF, Rupani PF, Wang S (2021a) Bacterial pretreatment of microalgae and the potential of novel nature hydrolytic sources. Environ Technol Innovat 21:101362

    Article  CAS  Google Scholar 

  • Barati B, Zeng K, Baeyens J, Wang S, Addy M, Gan SY, El-Fatah Abomohra A (2021b) Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenergy 145:105927

    Article  CAS  Google Scholar 

  • Carrillo-Reyes J, Barragán-Trinidad M, Buitrón G (2016) Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal Res 18:341–351

    Article  Google Scholar 

  • Chen CY, Bai MD, Chang JS (2013) Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J 81:170–176

    Article  CAS  Google Scholar 

  • Chen Z, Zheng W, Yang L, Boughner LA, Tian Y, Zheng T, Xu H (2017) Lytic and chemotactic features of the plaque-forming bacterium KD531 on Phaeodactylum tricornutum. Front Microbiol 8:2581

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho JY (2012) Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci Biotech Biochem 76:1452–1458

    Article  CAS  Google Scholar 

  • Coelho D, Lopes PA, Cardoso V, Ponte P, Brás J, Madeira MS, Alfaia CM, Bandarra NM, Gerken HG, Fontes CM (2019) Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci Rep 9:5382

    Article  Google Scholar 

  • Corrêa PS, Morais Júnior WG, Martins AA, Caetano NS, Mata TM (2021) Microalgae biomolecules: Extraction, separation and purification methods. Processes 9:10

    Article  Google Scholar 

  • Dai YM, Chen KT, Chen CC (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273

    Article  CAS  Google Scholar 

  • Daroch M, Shao C, Liu Y, Geng S, Cheng JJ (2013) Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 146:192–199

    Article  CAS  PubMed  Google Scholar 

  • Demuez M, González-Fernández C, Ballesteros M (2015a) Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnol Adv 33:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Demuez M, Mahdy A, Tomás-PejóE G-F, Ballesteros M (2015b) Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 112:1955–1966

    Article  CAS  PubMed  Google Scholar 

  • Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    Article  CAS  PubMed  Google Scholar 

  • Günerken E, D’Hondt E, Eppink M, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260

    Article  PubMed  Google Scholar 

  • Halim R, Rupasinghe TW, Tull DL, Webley PA (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53–63

    Article  CAS  PubMed  Google Scholar 

  • Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen WH (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Vijayan D, Praveenkumar R, Han JI, Lee K, Park JY, Chang WS, Lee JS, Oh YK (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenergy 46:89–101

    Article  CAS  Google Scholar 

  • Lee SY, Cho JM, Chang YK, Oh YK (2017) Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour Technol 244:1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Lenneman EM, Wang P, Barney BM (2014) Potential application of algicidal bacteria for improved lipid recovery with specific algae. FEMS Microbiol Lett 354:102–110

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tang J, Li J, Daroch M, Cheng JJ (2014) Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protist. Appl Microbiol Biotechnol 98:9643–9652

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mara C, Naiane SG, Pedro A, Idi F, Milko J, Karina G, Francisco O, Rodrigo N (2015) Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechl Rep 8:116–123

    Article  Google Scholar 

  • Nagarajan D, Chang JS, Lee DJ (2020) Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives. Bioresour Technol 302:122871

    Article  CAS  PubMed  Google Scholar 

  • Nishu SD, Kang Y, Han I, Jung TY, Lee TK (2019) Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS One 14:e0213370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3:1167990

    Article  Google Scholar 

  • Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373

    Article  CAS  PubMed  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lee TM, Chang JS (2015) Microalgal drying and cell disruption–recent advances. Bioresour Technol 184:258–266

    Article  CAS  PubMed  Google Scholar 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘Promising’alternative and renewable energy, review. Renew Sust Energy Rev 81:743–755

    Article  CAS  Google Scholar 

  • Skorupskaite V, Makareviciene V, Sendzikiene E, Gumbyte M (2019) Microalgae Chlorella sp. cell disruption efficiency utilising ultrasonication and ultrahomogenisation methods. J Appl Phycol 31:2349–2354

    Article  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Hui C, Wang S, Khan RA, Zhang Q, Zhao YH (2016) Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic Fe3O4 nanoparticles and wheat bran. J Hazard Mat 301:65–73

    Article  CAS  Google Scholar 

  • Vechio H, Mariano AB, Vieira RB (2021) A new approach on astaxanthin production via acid hydrolysis of wet Haematococcus pluvialis biomass. J Appl Phycol 33:2957-2966

  • Viner K, Champagne P, Jessop P (2018) Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem 20:4330–4338

    Article  CAS  Google Scholar 

  • Wang M, Chen S, Zhou W, Yuan W, Wang D (2020) Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Res 46:101794

    Article  Google Scholar 

  • Zhang F, Fan Y, Zhang D, Chen S, Bai X, Ma X, Xie Z, Xu H (2020) Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Env Pollut 263:114475

    Article  CAS  Google Scholar 

  • Zhang F, Ye Q, Chen Q, Yang K, Zhang D, Chen Z, Lu S, Shao X, Fan Y, Yao L, Ke L, Zheng T, Xu H (2018) Algicidal activity of novel marine bacterium Paracoccus sp. strain Y42 against a harmful algal-bloom-causing dinoflagellate Prorocentrum donghaiense. Appl Environ Microbiol 84:e01015-01018

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant NO. 32000268), and Gansu Provincial Science and Technology Program (Grant No. 20JR5RA196).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Chunfang Deng, Ying Liu and Yan Cui; Methodology: Chunfang Deng and Yan Cui; Writing-original draft preparation: Chunfang Deng and Ying Liu; Writing—review and editing: Chunfang Deng, Ying Liu and Yan Cui; Funding acquisition: Ying Liu and Yan Cui.

Corresponding authors

Correspondence to Yan Cui or Ying Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Cui, Y. & Liu, Y. Microalgae cell disruption and lipid composition and recovery improvements induced by algicidal effects of bacteria. J Appl Phycol 34, 2027–2036 (2022). https://doi.org/10.1007/s10811-022-02784-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02784-1

Keywords

Navigation