Skip to main content
Log in

Technologies for the Extraction and Post-extraction of Stevia rebaudiana Leaves

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Due to the perceived link between sugar and diseases such as diabetes, obesity, and cardiovascular diseases, the market for low-calorific sugar alternatives or sweeteners has intensified in recent times. Stevia (Stevia rebaudiana Bertoni) is an herbaceous perennial shrub and a member of the Asteraceae family. Stevia has found use as an alternative sugar product in beverages and other foods due to its low cost, low calorific content, and health benefits. This study is a review of various technologies that have been employed by various researchers in the processing of stevia leaves into syrup, powder, or crystals. The merits and demerits of each technology for the extraction process were also discussed. It was observed that its leaves contain the highest concentration of sweeteners and that solvent extraction is the most widely adopted extraction technique by various researchers, which has been reported to give a stevioside yield of more than 90%. The use of green-assisted extraction techniques, such as supercritical fluid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, pressurized fluid extraction, and enzyme-assisted extraction, offers a higher yield, better recovery, and higher purity of the steviosides. However, these technologies are yet to be utilized on an industrial scale. Post-extraction technologies such as chromatography have been reported to give an extract purity of about 97%. Other post-extraction technologies include adsorption and membrane technology for purification and/or concentration of the extract. The study also identified potential knowledge gaps that might help drive future research in the field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Iwuozor KO, Anyanwu VU, Olaniyi BO, Mbamalu PS, Adeniyi AG (2022) Adulteration of sugar: a growing global menace. Sugar Tech 24:914–919. https://doi.org/10.1007/s12355-022-01122-6

    Article  CAS  Google Scholar 

  2. Iwuozor KO, Mbamalu PS, Olaniyi BO, Anyanwu VU, Emenike EC, Adeniyi AG (2022) Fortification of sugar: a call for action. Sugar Tech 24:1284–1294. https://doi.org/10.1007/s12355-022-01183-7

    Article  CAS  Google Scholar 

  3. Iwuozor KO, Emenike EC, Ighalo JO, Eshiemogie S, Omuku PE, Adeniyi AG (2022) Valorization of sugar industry’s by-products: a perspective. Sugar Tech 24:1052–1078. https://doi.org/10.1007/s12355-022-01143-1

    Article  Google Scholar 

  4. Puri M, Sharma D, Tiwari AK (2011) Downstream processing of stevioside and its potential applications. Biotechnol Adv 29(6):781–791

    Article  CAS  PubMed  Google Scholar 

  5. Pól J, Hohnová B, Hyötyläinen T (2007) Characterisation of Stevia rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. J Chromatogr A 1150(1–2):85–92

    Article  PubMed  Google Scholar 

  6. Zhang SQ, Kumar A, Kutowy O (2000) Membrane-based separation scheme for processing sweeteners from stevia leaves. Food Res Int 33(7):617–620

    Article  Google Scholar 

  7. Rai C, Majumdar G, De S (2012) Optimization of process parameters for water extraction of stevioside using response surface methodology. Sep Sci Technol 47(7):1014–1022

    Article  CAS  Google Scholar 

  8. Serfaty M, Ibdah M, Fischer R, Chaimovitsh D, Saranga Y, Dudai N (2013) Dynamics of yield components and stevioside production in Stevia rebaudiana grown under different planting times, plant stands and harvest regime. Ind Crops Prod 50:731–736

    Article  CAS  Google Scholar 

  9. Balaswamy K, Rao PP, Rao GN, Nagender A, Satyanarayana A (2014) Production of low calorie ready-to-serve fruit beverages using a natural sweetener, stevia (Stevia rebaudiana L.). Focusing Modern Food Industry 3:59–65

    Article  Google Scholar 

  10. Tavarini S, Angelini LG (2013) Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric 93(9):2121–2129

    Article  CAS  PubMed  Google Scholar 

  11. Periche A, Castelló ML, Heredia A, Escriche I (2015) Influence of extraction methods on the yield of steviol glycosides and antioxidants in Stevia rebaudiana extracts. Plant Foods Hum Nutr 70(2):119–127

    Article  CAS  PubMed  Google Scholar 

  12. Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44. https://doi.org/10.1016/j.tibtech.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  13. Puri M, Sharma D, Barrow CJ, Tiwary A (2012) Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chem 132(3):1113–1120

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Li J-w, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88(2–3):215–221

    Article  CAS  Google Scholar 

  15. Jaitak V, Bandna BS, Kaul VK (2009) An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni). Phytochem Anal 20(3):240–245

    Article  CAS  PubMed  Google Scholar 

  16. Erkucuk A, Akgun I, Yesil-Celiktas O (2009) Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: identification and optimization. J Supercrit Fluids 51(1):29–35

    Article  CAS  Google Scholar 

  17. Pasquel A, Meireles M, Marques M, Petenate A (2000) Extraction of stevia glycosides with CO2+ water, CO2+ ethanol, and CO2+ water+ ethanol. Braz J Chem Eng 17:271–282

    Article  CAS  Google Scholar 

  18. Bursać Kovačević D, Maras M, Barba FJ, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo JM, Putnik P (2018) Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review. Food Chem 268:513–521. https://doi.org/10.1016/j.foodchem.2018.06.091

    Article  CAS  PubMed  Google Scholar 

  19. Raspe DT, da Silva C, Cláudio da Costa S (2022) Compounds from Stevia rebaudiana Bertoni leaves: an overview of non-conventional extraction methods and challenges. Food Biosci 46:101593. https://doi.org/10.1016/j.fbio.2022.101593

    Article  CAS  Google Scholar 

  20. Wang J, Zhao H, Wang Y, Lau H, Zhou W, Chen C, Tan S (2020) A review of stevia as a potential healthcare product: up-to-date functional characteristics, administrative standards and engineering techniques. Trends Food Sci Technol 103:264–281. https://doi.org/10.1016/j.tifs.2020.07.023

    Article  CAS  Google Scholar 

  21. Mohan MSG, Achary A, Mani V, Cicinskas E, Kalitnik AA, Khotimchenko M (2019) Purification and characterization of fucose-containing sulphated polysaccharides from Sargassum tenerrimum and their biological activity. J Appl Phycol 31(5):3101–3113

    Article  CAS  Google Scholar 

  22. García-Vaquero M, Rajauria G, O’Doherty JV, Sweeney T (2017) Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification. Food Res Int 99:1011–1020

    Article  PubMed  Google Scholar 

  23. Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S (2021) Perspective on the therapeutic applications of algal polysaccharides. J Polym Environ 30(3):785–809

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krakowska-Sieprawska A, Kiełbasa A, Rafińska K, Ligor M, Buszewski B (2022) Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 27(3):730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gizaw A, Marami LM, Teshome I, Sarba EJ, Admasu P, Babele DA, Dilba GM, Bune WM, Bayu MD, Tadesse M (2022) Phytochemical screening and in vitro antifungal activity of selected medicinal plants against candida albicans and aspergillus niger in west shewa zone, Ethiopia. Advances in Pharmacological and Pharmaceutical Sciences 2022

  26. Abdelaziz S, Benamira M, Messaadia L, Boughoues Y, Lahmar H, Boudjerda A (2021) Green corrosion inhibition of mild steel in HCl medium using leaves extract of Arbutus unedo L. plant: an experimental and computational approach. Colloid Surf A 619:126496

    Article  CAS  Google Scholar 

  27. Tripathi S, Sharma P, Singh K, Purchase D, Chandra R (2021) Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ Technol Innov 22:101434

    Article  CAS  Google Scholar 

  28. Tarapatskyy M, Gumienna A, Sowa P, Kapusta I, Puchalski C (2021) Bioactive phenolic compounds from Primula veris L.: influence of the extraction conditions and purification. Molecules 26(4):997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao KJ, Korumilli T, Jakkala S, Singh K (2021) Optimization of the one-step green synthesis of silver and gold nanoparticles using aqueous Athyrium filix femina extract using the taguchi method. BioNanoScience 11(4):915–922

    Article  Google Scholar 

  30. Arefin MA, Rashid F, Islam A (2021) A review of biofuel production from floating aquatic plants: an emerging source of bio-renewable energy. Biofuels Bioprod Biorefin 15(2):574–591

    Article  CAS  Google Scholar 

  31. Stéphane FFY, Jules BKJ, Batiha GE-S, Ali I, Bruno LN (2021) Extraction of bioactive compounds from medicinal plants and herbs. IntechOpen. https://doi.org/10.5772/intechopen.98602

    Article  Google Scholar 

  32. Hasan KF, Horváth PG, Horváth A, Alpár T (2021) Coloration of woven glass fabric using biosynthesized silver nanoparticles from Fraxinus excelsior tree flower. Inorg Chem Commun 126:108477

    Article  CAS  Google Scholar 

  33. Md Salim R, Asik J, Sarjadi MS (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol 55(2):295–313

    Article  CAS  Google Scholar 

  34. Shah MZ, Guan Z-H, Din AU, Ali A, Rehman AU, Jan K, Faisal S, Saud S, Adnan M, Wahid F (2021) Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci Rep 11(1):1–14

    Article  ADS  Google Scholar 

  35. Kashyap K, Hait M, Roymahapatra G, Vaishnav M (2022) Proximate and elemental analysis of Careya arborea Roxb plant’s root. ES Food Agroforestry 7:41–47

    CAS  Google Scholar 

  36. Patil PD, Patil SP, Kelkar RK, Patil NP, Pise PV, Nadar SS (2021) Enzyme-assisted supercritical fluid extraction: an integral approach to extract bioactive compounds. Trends Food Sci Technol 116:357–369

    Article  CAS  Google Scholar 

  37. Oluwaniyi OO, Adesibikan AA, Emmanuel SS (2022) Evaluation of wound-healing activity of securidaca longepedunculata root extract in male wistar rats. ChemistrySelect 7(26):e202200711

    Article  CAS  Google Scholar 

  38. Awolola G, Emmanuel S, Adesibikan A (2021) Evaluation of phytoconstituent and wound-healing potential of methanolic waste shell extract of Elaeis guineensis Jacquin in female rats. Phytomedicine Plus 1(4):100126

    Article  Google Scholar 

  39. Čuk N, Šala M, Gorjanc M (2021) Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 28(5):3215–3233

    Article  Google Scholar 

  40. Kaur B, Singh SM, Srivastav PP (2023) Novel extraction methods: profiling of natural phytochemicals. Novel Processing Methods for Plant-Based Health Foods: Extraction, Encapsulation, and Health Benefits of Bioactive Compounds:25

  41. Conde E, Moure A, Domínguez H, Parajó J (2013) Extraction of natural antioxidants from plant foods. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Elsevier, pp 506–594

  42. Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373(1):23–30

    Article  CAS  PubMed  Google Scholar 

  43. Tiwari BK (2015) Ultrasound: a clean, green extraction technology. Trends Anal Chem 71:100–109

    Article  CAS  Google Scholar 

  44. Jha AK, Sit N (2022) Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci Technol 119:579–591. https://doi.org/10.1016/j.tifs.2021.11.019

    Article  CAS  Google Scholar 

  45. Berk Z (2018) Food process engineering and technology. Academic press

    Google Scholar 

  46. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod 75:141–149

    Article  CAS  Google Scholar 

  47. Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A (2017) Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—a review. Molecules 22(5):680

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma K, Mahato N, Lee YR (2019) Extraction, characterization and biological activity of citrus flavonoids. Rev Chem Eng 35(2):265–284

    Article  CAS  Google Scholar 

  49. Maksoud S, Abdel-Massih RM, Rajha HN, Louka N, Chemat F, Barba FJ, Debs E (2021) Citrus aurantium L. active constituents, biological effects and extraction methods. An updated review. Molecules 26(19):5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovačević DB, Barba FJ, Granato D, Galanakis CM, Herceg Z, Dragović-Uzelac V, Putnik P (2018) Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem 254:150–157

    Article  Google Scholar 

  51. Raspe DT, Ciotta SR, Mello BT, Milani P, Silva C, Costa SC (2021) Pressurized liquid extraction of steviol glycosides from Stevia rebaudiana leaves. Chem Eng Trans 87:301–306

    Google Scholar 

  52. Gaweł-Bęben K, Bujak T, Nizioł-Łukaszewska Z, Antosiewicz B, Jakubczyk A, Karaś M, Rybczyńska K (2015) Stevia rebaudiana Bert. leaf extracts as a multifunctional source of natural antioxidants. Molecules 20(4):5468–5486

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ciulu M, Quirantes-Piné R, Spano N, Sanna G, Borrás-Linares I, Segura-Carretero A (2017) Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Ind Crops Prod 108:106–112

    Article  CAS  Google Scholar 

  54. Zaidan UH, Zen NIM, Amran NA, Shamsi S, Abd Gani SS (2019) Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. Biocatal Agric Biotechnol 18:101049

    Article  Google Scholar 

  55. Panwar D, Saini A, Panesar PS, Chopra HK (2021) Unraveling the scientific perspectives of citrus by-products utilization: progress towards circular economy. Trends Food Sci Technol 111:549–562

    Article  CAS  Google Scholar 

  56. Samuel P, Ayoob KT, Magnuson BA, Wölwer-Rieck U, Jeppesen PB, Rogers PJ, Rowland I, Mathews R (2018) Stevia leaf to stevia sweetener: exploring its science, benefits, and future potential. J Nutr 148(7):1186S-1205S

    Article  PubMed  Google Scholar 

  57. Prakash I, DuBois G, Clos J, Wilkens K, Fosdick L (2008) Development of rebiana, a natural, non-caloric sweetener. Food Chem Toxicol 46(7):S75–S82

    Article  CAS  PubMed  Google Scholar 

  58. Díaz-Montes E, Gutiérrez-Macías P, Orozco-Álvarez C, Castro-Muñoz R (2020) Fractionation of Stevia rebaudiana aqueous extracts via two-step ultrafiltration process: towards rebaudioside a extraction. Food Bioprod Process 123:111–122

    Article  Google Scholar 

  59. Barba FJ, Grimi N, Vorobiev E (2015) Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J Food Eng 149:222–228

    Article  CAS  Google Scholar 

  60. Castro-Muñoz R, Díaz-Montes E, Cassano A, Gontarek E (2021) Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit Rev Food Sci Nutr 61(13):2152–2174. https://doi.org/10.1080/10408398.2020.1772717

    Article  CAS  PubMed  Google Scholar 

  61. Qureshia IS, Fayyazb S, Sohaila A, Qureshia AS (2020) Stevia rebaudiana: a review. Ann Res 2:35–41

    Google Scholar 

  62. Vaghela SK, Soni A (2020) A comprehensive overview of Stevia rebaudiana and its secondary metabolite sweeteners. Türk Bilimsel Derlemeler Dergisi 13(2):126–138

    Google Scholar 

  63. Gunasena MDKM, Senarath RMUS, Senarath WTPSK (2021) A review on chemical composition, biosynthesis of steviol glycosides, application, cultivation, and phytochemical screening of Stevia rebaudiana (Bert.) bertoni. J Pharm Res Int. https://doi.org/10.9734/jpri/2021/v33i29B31593

    Article  Google Scholar 

  64. Yılmaz FM, Görgüç A, Uygun Ö, Bircan C (2021) Steviol glycosides and polyphenols extraction from Stevia rebaudiana Bertoni leaves using maceration, microwave-, and ultrasound-assisted techniques. Sep Sci Technol 56(5):936–948

    Article  Google Scholar 

  65. Yang Z, Uhler B, Lipkie T (2019) Microwave-assisted subcritical water extraction of steviol glycosides from stevia rebaudiana leaves. Nat Prod Commun 14(6):1934578X19860003

    CAS  Google Scholar 

  66. Rajasekaran T, Giridhar P, Ravishankar G (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87(3):420–424

    Article  CAS  Google Scholar 

  67. Shuchita A, Soni A (2020) A Comprehensive overview of Stevia rebaudiana and its secondary metabolite sweeteners. Türk Bilimsel Derlemeler Dergisi 13(2):126–138

    Google Scholar 

  68. Rajab R, Mohankumar C, Murugan K, Harish M, Mohanan P (2009) Purification and toxicity studies of stevioside from Stevia rebaudiana Bertoni. Toxicol Int 16(1):49

    Google Scholar 

  69. Kumari N, Rana R, Sharma Y, Kumar S (2017) Extraction, purification and analysis of sweet compounds in Stevia rebaudiana Bertoni using chromatographic techniques. Indian J Pharm Sci 79(4):617–624

    Article  CAS  Google Scholar 

  70. Shukla S, Mehta A, Bajpai VK, Shukla S (2009) In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem Toxicol 47(9):2338–2343

    Article  CAS  PubMed  Google Scholar 

  71. Abou-Arab AE, Abou-Arab AA, Abu-Salem MF (2010) Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana Bertoni plant. Afr J Food Sci 4(5):269–281

    CAS  Google Scholar 

  72. Afandi A, Sarijan S, Shaha RK (2013) Optimization of rebaudioside a extraction from Stevia rebaudiana (Bertoni) and quantification by high performance liquid chromatography analysis. J Trop Resour Sustain Sci (JTRSS) 1(1):62–70

    Article  Google Scholar 

  73. Rai A, Mohanty B, Bhargava R (2016) Fitting of broken and intact cell model to supercritical fluid extraction (SFE) of sunflower oil. Innov Food Sci Emerg Technol 38:32–40

    Article  CAS  Google Scholar 

  74. Salea R, Veriansyah B, Tjandrawinata RR (2017) Optimization and scale-up process for supercritical fluids extraction of ginger oil from Zingiber officinale var. Amarum. J Supercrit Fluids 120:285–294

    Article  CAS  Google Scholar 

  75. Wu S-C (2017) Antioxidant activity of sulfated seaweeds polysaccharides by novel assisted extraction. In: Xu Z (ed) Solubility of polysaccharides. IntechOpen, London, pp 89–108

    Google Scholar 

  76. Rovetto LJ, Aieta NV (2017) Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. The Journal of Supercritical Fluids 129:16–27

    Article  CAS  Google Scholar 

  77. Capuzzo A, Maffei ME, Occhipinti A (2013) Supercritical fluid extraction of plant flavors and fragrances. Molecules 18(6):7194–7238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perez-Vega S, Salmeron I, Perez-Reyes I, Kwofie E, Ngadi M (2022) Influence of the Supercritical Fluid Extraction (SFE) on Food Bioactives. In: Retention of bioactives in food processing. Springer, pp 309–340

  79. Lewińska A, Domżał-Kędzia M, Maciejczyk E, Łukaszewicz M, Bazylińska U (2021) Design and engineering of “green” nanoemulsions for enhanced topical delivery of bakuchiol achieved in a sustainable manner: a novel eco-friendly approach to bioretinol. Int J Mol Sci 22(18):10091

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ahangari H, King JW, Ehsani A, Yousefi M (2021) Supercritical fluid extraction of seed oils—a short review of current trends. Trends Food Sci Technol 111:249–260

    Article  CAS  Google Scholar 

  81. Jha AK, Sit N (2021) Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci Technol 119:579–591

    Article  Google Scholar 

  82. Paula JT, Sousa IM, Foglio MA, Cabral FA (2018) Selective fractionation of extracts of Arrabidaea chica Verlot using supercritical carbon dioxide as antisolvent. J Supercrit Fluids 133:9–16

    Article  CAS  Google Scholar 

  83. García-Pérez JS, Cuéllar-Bermúdez SP, Arévalo-Gallegos A, Salinas-Salazar C, Rodríguez-Rodríguez J, de la Cruz-Quiroz R, Iqbal H, Parra-Saldívar R (2020) Influence of supercritical CO2 extraction on fatty acids profile, volatile compounds and bioactivities from Rosmarinus officinalis. Waste Biomass Valoriz 11(4):1527–1537

    Article  Google Scholar 

  84. Carissimi G, Montalbán MG, Baños FGD, Víllora G (2018) High pressure phase equilibria for binary mixtures of CO2+ 2-pentanol, vinyl butyrate, 2-pentyl butyrate or butyric acid systems. J Supercrit Fluids 135:69–77

    Article  CAS  Google Scholar 

  85. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo D-VN, Prabhakar S (2021) Techniques and modeling of polyphenol extraction from food: a review. Environ Chem Lett 19(4):3409–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee K-Y, Rahman MS, Kim A-N, Gul K, Kang S-W, Chun J, Kerr WL, Choi S-G (2019) Quality characteristics and storage stability of low-fat tofu prepared with defatted soy flours treated by supercritical-CO2 and hexane. Lwt 100:237–243

    Article  CAS  Google Scholar 

  87. Sakaki K, Yokochi T, Suzuki O, Hakuta T (1990) Supercritical fluid extraction of fungal oil using CO2, N2O, CHF3 and SF6. J Am Oil Chem Soc 67(9):553–557

    Article  CAS  Google Scholar 

  88. Pripakhaylo A, Magomedov R, Maryutina T (2019) Separation of heavy oil into narrow fractions by supercritical fluid extraction using a CO2-toluene mixture. J Anal Chem 74(4):401–409

    Article  CAS  Google Scholar 

  89. Sánchez-Vicente Y, Cabañas A, Renuncio JA, Pando C (2009) Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. J Supercrit Fluids 49(2):167–173

    Article  Google Scholar 

  90. Campalani C, Amadio E, Zanini S, Dall’Acqua S, Panozzo M, Ferrari S, De Nadai G, Francescato S, Selva M, Perosa A (2020) Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J CO2 Utiliz 41:101259

    Article  CAS  Google Scholar 

  91. Uwineza PA, Waśkiewicz A (2020) Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 25(17):3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lefebvre T, Destandau E, Lesellier E (2021) Selective extraction of bioactive compounds from plants using recent extraction techniques: a review. J Chromatogr A 1635:461770

    Article  CAS  PubMed  Google Scholar 

  93. Zacconi FC, Cabrera AL, Ordoñez-Retamales F, del Valle JM, Juan C (2017) Isothermal solubility in supercritical carbon dioxide of solid derivatives of 2, 3-dichloronaphthalene-1, 4-dione (dichlone): 2-(Benzylamino)-3-chloronaphthalene-1, 4-dione and 2-chloro-3-(phenethylamino) naphthalene-1, 4-dione. J Supercrit Fluids 129:75–82

    Article  CAS  Google Scholar 

  94. Roodpeyma M, Guigard SE, Stiver WH (2018) Pressure control of a continuous pilot scale supercritical fluid extraction (SFE) process. J Supercrit Fluids 135:120–129

    Article  CAS  Google Scholar 

  95. Hannay J, Hogarth J (1880) I. On the solubility of solids in gases. Proceedings of the royal society of London 30 (200–205):178–188

  96. Michalak I, Dmytryk A, Wieczorek PP, Rój E, Łęska B, Górka B, Messyasz B, Lipok J, Mikulewicz M, Wilk R (2015) Supercritical algal extracts: a source of biologically active compounds from nature. J Chem. https://doi.org/10.1155/2015/597140

    Article  Google Scholar 

  97. Singh R, Dhanani T, Kumar S (2017) Supercritical Fluid Extraction of Bioactive Compounds from Fruits and Vegetables. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition, pp 749–762

  98. Tan S, Shibuta Y, Tanaka O (1988) Isolation of sweetener from Stevia rebaudiana. Jpn Kokai 63(177):764

    Google Scholar 

  99. Water CO (2000) Extraction of stevia glycosides with CO. Braz J Chem Eng 17(3):1–10. https://doi.org/10.1590/S0104-66322000000300003

    Article  Google Scholar 

  100. Yoda SK, Marques MO, Petenate AJ, Meireles MAA (2003) Supercritical fluid extraction from Stevia rebaudiana Bertoni using CO2 and CO2+ water: extraction kinetics and identification of extracted components. J Food Eng 57(2):125–134

    Article  Google Scholar 

  101. Yildiz-Ozturk E, Tag O, Yesil-Celiktas O (2014) Subcritical water extraction of steviol glycosides from Stevia rebaudiana leaves and characterization of the raffinate phase. J Supercrit Fluids 95:422–430

    Article  CAS  Google Scholar 

  102. Pico Y (2013) Ultrasound-assisted extraction for food and environmental samples. Trends Anal Chem 43:84–99

    Article  CAS  Google Scholar 

  103. Anticona M, Blesa J, Frigola A, Esteve MJ (2020) High biological value compounds extraction from citrus waste with non-conventional methods. Foods 9(6):811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Golmakani M-T, Moayyedi M (2016) Comparison of microwave-assisted hydrodistillation and solvent-less microwave extraction of essential oil from dry and fresh Citruslimon (Eureka variety) peel. J Essent Oil Res 28(4):272–282

    Article  CAS  Google Scholar 

  105. Wang J, Xie B, Sun Z (2021) Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage. Lwt 137:110438

    Article  CAS  Google Scholar 

  106. Prado JM, Veggi PC, Meireles MAA (2017) Scale-up issues and cost of manufacturing bioactive compounds by supercritical fluid extraction and ultrasound assisted extraction. In: Global food security and wellness. Springer, pp 377–433

  107. Pereira DTV, Zabot GL, Reyes FGR, Iglesias AH, Martínez J (2021) Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov Food Sci Emerg Technol 67:102549

    Article  CAS  Google Scholar 

  108. Bi Y, Lu Y, Yu H, Luo L (2019) Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacogn Mag 15(60):156

    Article  CAS  Google Scholar 

  109. Rouhani M (2019) Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia rebaudiana. Ind Crops Prod 132:226–235

    Article  CAS  Google Scholar 

  110. Chmelová D, Škulcová D, Legerská B, Horník M, Ondrejovič M (2020) Ultrasonic-assisted extraction of polyphenols and antioxidants from Picea abies bark. J Biotechnol 314:25–33

    Article  PubMed  Google Scholar 

  111. Oroian M, Ursachi F, Dranca F (2020) Ultrasound-assisted extraction of polyphenols from crude pollen. Antioxidants 9(4):322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 61(20):4667–4675

    Article  CAS  PubMed  Google Scholar 

  113. Hanjabam MD, Kumar A, Tejpal C, Krishnamoorthy E, Kishore P, Kumar KA (2019) Isolation of crude fucoidan from Sargassum wightii using conventional and ultra-sonication extraction methods. Bioactive Carbohydrat Dietary Fibre 20:100200

    Article  CAS  Google Scholar 

  114. Alboofetileh M, Rezaei M, Tabarsa M, You S (2019) Ultrasound-assisted extraction of sulfated polysaccharide from Nizamuddinia zanardinii: process optimization, structural characterization, and biological properties. J Food Process Eng 42(2):e12979

    Article  CAS  Google Scholar 

  115. Alboofetileh M, Rezaei M, Tabarsa M, Rittà M, Donalisio M, Mariatti F, You S, Lembo D, Cravotto G (2019) Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int J Biol Macromol 124:131–137

    Article  CAS  PubMed  Google Scholar 

  116. Ma C-h, Yang L, Zu Y-g, Liu T-T (2012) Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chem 134(4):2532–2539

    Article  CAS  PubMed  Google Scholar 

  117. Wang S-y, Yang L, Zu Y-g, Zhao C-j, Sun X-w, Zhang L, Zhang Z-h (2011) Design and performance evaluation of ionic-liquids-based microwave-assisted environmentally friendly extraction technique for camptothecin and 10-hydroxycamptothecin from samara of camptotheca acuminata. Ind Eng Chem Res 50(24):13620–13627

    Article  CAS  Google Scholar 

  118. El-Shamy S, Farag MA (2021) Novel trends in extraction and optimization methods of bioactives recovery from pomegranate fruit biowastes: valorization purposes for industrial applications. Food Chem 365:130465

    Article  CAS  PubMed  Google Scholar 

  119. Yusoff IM, Taher ZM, Rahmat Z, Chua LS (2022) A review of ultrasound-assisted extraction for plant bioactive compounds: phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 157:111268

    Article  CAS  PubMed  Google Scholar 

  120. Qian J, Li Y, Gao J, He Z, Yi S (2020) The effect of ultrasonic intensity on physicochemical properties of Chinese fir. Ultrason Sonochem 64:104985

    Article  CAS  PubMed  Google Scholar 

  121. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochem 34:540–560

    Article  CAS  Google Scholar 

  122. Zahari NAAR, Chong GH, Abdullah LC, Chua BL (2020) Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: kinetic modeling and optimization. Processes 8(3):322

    Article  CAS  Google Scholar 

  123. Agregán R, Munekata PE, Feng X, Astray G, Gullón B, Lorenzo JM (2021) Recent advances in the extraction of polyphenols from eggplant and their application in foods. LWT 146:111381

    Article  Google Scholar 

  124. Cares M, Vargas Y, Gaete L, Sainz J, Alarcon J (2010) Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys Procedia 3(1):169–178

    Article  CAS  ADS  Google Scholar 

  125. Yan J-K, Wang Y-Y, Ma H-L, Wang Z-B (2016) Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. Ultrason Sonochem 29:251–257

    Article  CAS  PubMed  Google Scholar 

  126. Shirsath S, Sonawane S, Gogate P (2012) Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chem Eng Process 53:10–23

    Article  CAS  Google Scholar 

  127. Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A, Pacheco N (2017) Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 7(3):47

    Article  CAS  Google Scholar 

  128. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops—a review. Ultrason Sonochem 48:538–549

    Article  CAS  PubMed  Google Scholar 

  129. Marhamati M, KheiratiKakhaki Z, Rezaei M (2020) Advance in ultrasound-assisted extraction of edible oils: a review. J Nutr Fast Health 8(4):220–230

    Google Scholar 

  130. Chemat F, Rombaut N, Sicaire A, Meullemiestre A, Abert-Vian M, Fabiano-Tixier A, Abert-vian M (2017) Ultrasonics Sonochemistry Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  131. Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS (2021) Recent trends in extraction of plant bioactives using green technologies: a review. Food Chem 353:129431

    Article  CAS  PubMed  Google Scholar 

  132. Wen L, Zhang Z, Sun D-W, Sivagnanam SP, Tiwari BK (2020) Combination of emerging technologies for the extraction of bioactive compounds. Crit Rev Food Sci Nutr 60(11):1826–1841

    Article  CAS  PubMed  Google Scholar 

  133. Rosa R, Ferrari E, Veronesi P (2018) From field to shelf: how microwave-assisted extraction techniques foster an integrated green approach. Emerging microwave technologies in industrial, agricultural, medical and food processing 179–203

  134. Cassol L, Rodrigues E, Noreña CPZ (2019) Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Ind Crops Prod 133:168–177

    Article  CAS  Google Scholar 

  135. Neog U, Dhar P, Kumari T, Nickhil C, Deka SC, Pandiselvam R (2023) Optimization of microwave-assisted process for extraction of phytochemicals from norabogori fruit (Prunuspersica L. Batsch) and its application as fruit leather. Biomass Convers Biorefinery 1–15. https://doi.org/10.1007/s13399-023-04035-w

    Article  Google Scholar 

  136. Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, Saha S, Sairam K (2019) Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int J Biol Macromol 135:1070–1081

    Article  CAS  PubMed  Google Scholar 

  137. Zghaibi N, Omar R, Mustapa Kamal SM, Awang Biak DR, Harun R (2019) Microwave-assisted brine extraction for enhancement of the quantity and quality of lipid production from microalgae Nannochloropsis sp. Molecules 24(19):3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Carbonell-Capella JM, Šic Žlabur J, Rimac Brnčić S, Barba FJ, Grimi N, Koubaa M, Brnčić M, Vorobiev E (2017) Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves. J Food Process Preserv 41(5):e13179

    Article  Google Scholar 

  139. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  CAS  Google Scholar 

  140. Kovačević DB, Maras M, Barba FJ, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo JM, Putnik P (2018) Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review. Food Chem 268:513–521

    Article  Google Scholar 

  141. Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V (2020) Advanced technologies for the extraction of marine brown algal polysaccharides. Mar Drugs 18(3):168

    Article  PubMed  PubMed Central  Google Scholar 

  142. Amiri-Rigi A, Abbasi S, Scanlon MG (2016) Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: optimization of enzymatic and ultrasound pre-treatments. Innov Food Sci Emerg Technol 35:160–167

    Article  CAS  Google Scholar 

  143. Llavata B, García-Pérez JV, Simal S, Cárcel JA (2020) Innovative pre-treatments to enhance food drying: a current review. Curr Opin Food Sci 35:20–26

    Article  Google Scholar 

  144. Rao AB, Reddy GR, Ernala P, Sridhar S, Ravikumar YV (2012) An improvised process of isolation, purification of steviosides from Stevia rebaudiana Bertoni leaves and its biological activity. Int J Food Sci Technol 47(12):2554–2560

    Article  CAS  Google Scholar 

  145. Pól J, Varaďová Ostrá E, Karásek P, Roth M, Benešová K, Kotlaříková P, Čáslavský J (2007) Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Anal Bioanal Chem 388(8):1847–1857

    Article  PubMed  Google Scholar 

  146. Teo CC, Tan SN, Yong JWH, Hew CS, Ong ES (2009) Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. J Sep Sci 32(4):613–622

    Article  CAS  PubMed  Google Scholar 

  147. Renouard S, Hano C, Corbin C, Fliniaux O, Lopez T, Montguillon J, Barakzoy E, Mesnard F, Lamblin F, Lainé E (2010) Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem 122(3):679–687

    Article  CAS  Google Scholar 

  148. Bildstein M, Lohmann M, Hennigs C, Krause A, Hilz H (2008) An enzyme-based extraction process for the purification and enrichment of vegetable proteins to be applied in bakery products. Eur Food Res Technol 228(2):177–186

    Article  CAS  Google Scholar 

  149. Patindol J, Wang L, Wang YJ (2007) Cellulase-assisted extraction of oligosaccharides from defatted rice bran. J Food Sci 72(9):C516–C521

    Article  CAS  PubMed  Google Scholar 

  150. Ferruzzi MG, Green RJ (2006) Analysis of catechins from milk–tea beverages by enzyme assisted extraction followed by high performance liquid chromatography. Food Chem 99(3):484–491

    Article  CAS  Google Scholar 

  151. Sampathu S, Naidu M, Sowbhagya H, Naik J, Krishnamurthy N (2006) Process of extracting chili (capsicum) oleoresin. US Patent (7097867B2). https://patents.google.com/patent/US7097867/en

  152. Wilkins MR, Widmer WW, Grohmann K, Cameron RG (2007) Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Biores Technol 98(8):1596–1601

    Article  CAS  Google Scholar 

  153. Kammerer D, Claus A, Schieber A, Carle R (2005) A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J Food Sci 70(2):C157–C163

    Article  CAS  Google Scholar 

  154. De Maria L, Vind J, Oxenbøll K, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74(2):290–300

    Article  CAS  PubMed  Google Scholar 

  155. Wu Y, Cui SW, Tang J, Gu X (2007) Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chem 105(4):1599–1605

    Article  CAS  Google Scholar 

  156. Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102(1):77–81

    Article  CAS  Google Scholar 

  157. Barzana E, Rubio D, Santamaria R, Garcia-Correa O, Garcia F, Ridaura Sanz V, López-Munguía A (2002) Enzyme-mediated solvent extraction of carotenoids from marigold flower (Tagetes erecta). J Agric Food Chem 50(16):4491–4496

    Article  CAS  PubMed  Google Scholar 

  158. Yang Y-C, Li J, Zu Y-G, Fu Y-J, Luo M, Wu N, Liu X-L (2010) Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chem 122(1):373–380

    Article  CAS  Google Scholar 

  159. Passos CP, Yilmaz S, Silva CM, Coimbra MA (2009) Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem 115(1):48–53

    Article  CAS  Google Scholar 

  160. Ruiz-Terán F, Perez-Amador I, López-Munguia A (2001) Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. J Agric Food Chem 49(11):5207–5209

    Article  PubMed  Google Scholar 

  161. Latif S, Anwar F (2009) Effect of aqueous enzymatic processes on sunflower oil quality. J Am Oil Chem Soc 86(4):393–400

    Article  CAS  Google Scholar 

  162. Rui H, Zhang L, Li Z, Pan Y (2009) Extraction and characteristics of seed kernel oil from white pitaya. J Food Eng 93(4):482–486

    Article  CAS  Google Scholar 

  163. Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 17(11):579–590

    Article  CAS  Google Scholar 

  164. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb Technol 19(6):402–420

    Article  CAS  Google Scholar 

  165. Dominguez H, Nunez M, Lema J (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49(3):271–286

    Article  CAS  Google Scholar 

  166. Nadar SS, Rao P, Rathod VK (2018) Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review. Food Res Int 108:309–330

    Article  CAS  PubMed  Google Scholar 

  167. Yuliarti O, Goh KK, Matia-Merino L, Mawson J, Brennan C (2015) Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chem 187:290–296

    Article  CAS  PubMed  Google Scholar 

  168. Wikiera A, Mika M, Starzyńska-Janiszewska A, Stodolak B (2016) Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohyd Polym 142:199–205

    Article  CAS  Google Scholar 

  169. Oliveira JAR, Komesu A, Martins LHDS, Rogez H, da Silva Pena R (2020) Enzyme-assisted extraction of phenolic compounds from murucizeiro leaves (Byrsonima crassifolia). Scientia Plena 16(5):1–9. https://doi.org/10.14808/sci.plena.2020.051501

    Article  CAS  Google Scholar 

  170. Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Brnčić SR (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37

    Article  Google Scholar 

  171. Domínguez-Rodríguez G, Marina ML, Plaza M (2021) Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem 339:128086

    Article  PubMed  Google Scholar 

  172. Teles ASC, Chávez DWH, Coelho MAZ, Rosenthal A, Gottschalk LMF, Tonon RV (2021) Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J Food Eng 288:110128

    Article  Google Scholar 

  173. Macedo GA, Santana ÁL, Crawford LM, Wang SC, Dias FF, de Moura Bell JM (2021) Integrated microwave-and enzyme-assisted extraction of phenolic compounds from olive pomace. Lwt 138:110621

    Article  CAS  Google Scholar 

  174. Zhang Y-G, Kan H, Chen S-X, Thakur K, Wang S, Zhang J-G, Shang Y-F, Wei Z-J (2020) Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem 321:126672

    Article  CAS  PubMed  Google Scholar 

  175. Wang Y, Chen L, Li Y, Li Y, Yan M, Chen K, Hao N, Xu L (2016) Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem 80(1):67–73

    Article  CAS  PubMed  Google Scholar 

  176. Huang X-Y, Fu J-F, Di D-L (2010) Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Sep Purif Technol 71(2):220–224

    Article  CAS  Google Scholar 

  177. Purkayastha S, Markosyan A, Malsagov M (2012) Process for manufacturing a sweetener and use thereof. US Patents (US8337927B2). https://patents.google.com/patent/US8337927B2/en

  178. Payzant JD, Laidler JK, Ippolito RM (1999) Method of extracting selected sweet glycosides from the Stevia rebaudiana plant. US Patents (US5962678A). https://patents.google.com/patent/US5962678A/en

  179. Zhang M, Hua X, Liu Y, Wang Z, Wang M, Yang R (2021) Purification of stevia extract by chitosan precipitation and reversed-phase chromatography. Int J Food Sci Technol 56(7):3409–3420

    Article  CAS  Google Scholar 

  180. Iwuozor KO, Adeniyi AG, Emenike EC, Adepoju MI, Ahmed MO (2023) Sugarcane juice powder produced from spray drying technology: a review of properties and operating parameters. Sugar Tech 25:497–507. https://doi.org/10.1007/s12355-022-01211-6

    Article  CAS  Google Scholar 

  181. Prakash I, Bunders C, Devkota KP, Charan RD, Ramirez C, Priedemann C, Markosyan A (2014) Isolation and characterization of a novel rebaudioside M isomer from a bioconversion reaction of rebaudioside A and NMR comparison studies of rebaudioside M isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita. Biomolecules 4(2):374–389

    Article  PubMed  PubMed Central  Google Scholar 

  182. Upreti M, Strassburger K, Chen YL, Wu S, Prakash I (2011) Solubility enhancement of steviol glycosides and characterization of their inclusion complexes with gamma-cyclodextrin. Int J Mol Sci 12(11):7529–7553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chaturvedula VSP, Clos JF, Rhea J, Milanowski D, Mocek U, DuBois GE, Prakash I (2011) Minor diterpenoid glycosides from the leaves of Stevia rebaudiana. Phytochem Lett 4(3):209–212

    Article  CAS  Google Scholar 

  184. Chaturvedula VSP, Prakash I (2011) A new diterpene glycoside from Stevia rebaudiana. Molecules 16(4):2937–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Markosyan A, Prakash I, Bunders C, Pankaj S, Cyrille J, Badie A, Ter Halle R (2017) High-purity steviol glycosides. US Patents (US20130071339A1). https://patents.google.com/patent/US20130071339A1/en

  186. Purkayastha S, Kwok D (2020) Metabolic fate in adult and pediatric population of steviol glycosides produced from stevia leaf extract by different production technologies. Regul Toxicol Pharmacol 116:104727

    Article  CAS  PubMed  Google Scholar 

  187. Pieri V, Belancic A, Morales S, Stuppner H (2011) Identification and quantification of major steviol glycosides in Stevia rebaudiana purified extracts by 1H NMR spectroscopy. J Agric Food Chem 59(9):4378–4384

    Article  CAS  PubMed  Google Scholar 

  188. Starratt AN, Kirby CW, Pocs R, Brandle JE (2002) Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry 59(4):367–370. https://doi.org/10.1016/S0031-9422(01)00416-2

    Article  CAS  PubMed  Google Scholar 

  189. Well C, Frank O, Hofmann T (2013) Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach. J Agric Food Chem 61(47):11312–11320

    Article  CAS  PubMed  Google Scholar 

  190. Bridel M, Lavieille R (1931) The principle of sweetness (Stevia rebaudiana Bertoni) III. Diastatic hydrolysis of steviol and acid hydrolysis of isosteviol. Bull Soc Chem Biol 13:409–412

    Google Scholar 

  191. Sakamoto I, Yamasaki K, Tanaka O (1977) Application of 13C NMR spectroscopy to chemistry of natural glycosides: rebaudioside-C, a new sweet diterpene glycoside of Stevia rebaudiana. Chem Pharm Bull 25(4):844–846

    Article  CAS  Google Scholar 

  192. Kohda H, Kasai R, Yamasaki K, Murakami K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15(6):981–983

    Article  CAS  Google Scholar 

  193. Kobayashi M, Horikawa S, Degrandi IH, Ueno J, Mitsuhashi H (1977) Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochemistry 16(9):1405–1408

    Article  CAS  Google Scholar 

  194. Ibrahim MA, Rodenburg DL, Alves K, Fronczek FR, McChesney JD, Wu C, Nettles BJ, Venkataraman SK, Jaksch F (2014) Minor diterpene glycosides from the leaves of Stevia rebaudiana. J Nat Prod 77(5):1231–1235

    Article  CAS  PubMed  Google Scholar 

  195. Kitada Y, Sasaki M, Yamazoe Y, Nakazawa H (1989) Simultaneous determination of stevioside, rebaudioside A and C and dulcoside A in foods by high-performance liquid chromatography. J Chromatogr A 474(2):447–451

    Article  CAS  Google Scholar 

  196. Dacome AS, Da Silva CC, Da Costa CE, Fontana JD, Adelmann J, Da Costa SC (2005) Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods. Process Biochem 40(11):3587–3594

    Article  CAS  Google Scholar 

  197. Woelwer-Rieck U, Lankes C, Wawrzun A, Wüst M (2010) Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana. Eur Food Res Technol 231(4):581–588

    Article  CAS  Google Scholar 

  198. Hashimoto Y, Moriyasu M, Nakamura S, Ishiguro S, Komuro M (1978) High-performance liquid chromatographic determination Stevia components on a hydrophilic packed column. J Chromatogr A 161:403–405

    Article  CAS  Google Scholar 

Download references

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kingsley O. Iwuozor or Adewale George Adeniyi.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

The authors have unanimously decided that this manuscript be sent for possible publication.

Consent to Publish

Not applicable.

Compliance with Ethical Standards

This article does not contain any studies involving human or animal subjects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwuozor, K.O., Emmanuel, S.S., Ahmed, M.O. et al. Technologies for the Extraction and Post-extraction of Stevia rebaudiana Leaves. Chemistry Africa 7, 539–563 (2024). https://doi.org/10.1007/s42250-023-00787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00787-0

Keywords

Navigation