Skip to main content
Log in

Nanofiltration (NF) Membrane Processing in the Food Industry

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Nanofiltration (NF) membranes are the globally recognized membrane technology, having potential use in food industries from a consistent, economical and standard operation point of view. NF has also attracted industries due to the need for lower pressure–driven membranes compared to reverse osmosis (RO) membranes. NF membranes are used in various applications for concentrating, fractionating and purifying various edible products from the dilute streams. Food processing industries are countlessly utilizing the NF membranes for beverage, dairy, vegetable oils and other food items for separation, concentration/purification, deacidification, demineralization, microbial reduction, etc. However, the increasing challenge in membrane science and technology is to develop low-cost, highly efficient, long-lasting membranes. The permeance-selectivity trade-off relationship, physical ageing and fouling are the main disputes in developing a promising membrane. This review provides a broad view of the current advancement of NF membranes in diverse fields related to the food industry. In this review article, the noteworthy growth of NF membrane in the food industries has been discussed. Various methods for the development of efficient NF membranes along with fouling control measures and research opportunities have been discussed. It is anticipated that this inclusive review may inspire a new research platform for developing next-generation NF membrane processes for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

© 2009 Elsevier Ltd.)

Fig. 4

© 2016 Elsevier B.V.)

Fig. 5
Fig. 6

© 2020 Elsevier)

Fig. 7

© 2020 Elsevier)

Similar content being viewed by others

Abbreviations

NF:

Nanofiltration

DF:

Diafiltration

Dia-NF:

Dia-nanofiltration

UF:

Ultrafiltration

MF:

Microfiltration

RO:

Reverse osmosis

ED:

Electrodialysis

AW:

Acid whey

SW:

Sweet whey

OSN:

Organic solvent nanofiltration

LPG:

Liquid petroleum gas

MWCO:

Molecular weight cut-off

TMP:

Trans-membrane pressure

PL:

Phospholipids

PPs:

Polyphenols

PDMS-PTFPMS:

Trifluoropropylmethylsiloxane dimethylsiloxane

PVDF:

Polyvinylidene fluoride

FFAs:

Free fatty acids

PLE:

Pressurized liquid extraction

RBO:

Rice bran oil

TSS:

Total soluble solids

HFM:

Hollow fibre membrane

FSM:

Flat sheet membrane

PA:

Polyamide

TFC:

Thin-film composite

OA:

Organic acids

References

  1. Culler PL, Mcclellan SA (1976) A new approach to partial demineralization. 50th Ann Tech Conf of FS/AWWA/FPCA and FW and PCOA

  2. Conlonw J, Click JD (1984) Surface water treatment with ultrafiltration. 58th Ann Tech Conf of FS/AWWA/FPCA and FW and PCOA

  3. Karki S, Gohain MB, Yadav D, Ingole PG (2021) Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: a review. Int J Biol Macromol 193:2121–2139

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9:3077–3092

    Article  Google Scholar 

  5. Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG (2020) Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. J Membr Sci 609:118212

    Article  CAS  Google Scholar 

  6. Ingole PG, Jeon JD, Hazarika S, Lee HK (2021) Polymeric nanocomposite membranes for diverse applications, Handbook of Polymer Nanocomposites for Industrial Applications. Micro and Nano Technologies pp. 169–199

  7. Alves YPC, Antunes FAF, da Silva SS, Forte MBS (2021) From by- to bioproducts: selection of a nanofiltration membrane for biotechnological xylitol purification and process optimization. Food Bioprod Process 125:79–90

    Article  Google Scholar 

  8. Ouyang Z, Huang Z, Tang X, Xiong C, Tang M, Lu Y (2019) A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Sep Purif Technol 211:90–97

    Article  CAS  Google Scholar 

  9. Kotsanopoulos KV, Arvanitoyannis IS (2015) Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods. Crit Rev Food Sci Nutr 55:1147–1175

    Article  CAS  PubMed  Google Scholar 

  10. Nath K, Dave HK, Patel TM (2018) Revisiting the recent applications of nanofiltration in food processing industries: progress and prognosis. Trends Food Sci Technol 73:12–24

    Article  CAS  Google Scholar 

  11. Chen GQ, Leong TSH, Kentish SE, Ashokkumar M, Martin GJO (2019) Membrane separations in the dairy industry, separation of functional molecules in food by membrane technology, pp. 267–304.

  12. Salehi F (2014) Current and future applications for nanofiltration technology in the food processing. Food Bioprod Process 92:161–177

    Article  CAS  Google Scholar 

  13. Conidi C, Castro-Muñoz R, Cassano A (2020) Membrane-based operations in the fruit juice processing industry: a review. Beverages 6:18

    Article  CAS  Google Scholar 

  14. Salgado CM, Palacio L, Prádanos P, Hernández A, González-Huerta C, Pérez-Magariño S (2015) Comparative study of red grape must nanofiltration: laboratory and pilot plant scales. Food Bioprod Process 94:610–620

    Article  CAS  Google Scholar 

  15. Salgado CM, Fernández-Fernández E, Palacio L, Hernández A, Prádanos P (2015) Alcohol reduction in red and white wines by nanofiltration of musts before fermentation. Food Bioprod Process 96:285–295

    Article  CAS  Google Scholar 

  16. Yadav D, Hazarika S, Ingole PG (2021) Recent development in nanofiltration (NF) membranes and their diversified applications. Emergent Materials. https://doi.org/10.1007/s42247-021-00302-6

    Article  Google Scholar 

  17. Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R (2018) Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci 19:351

    Article  PubMed Central  Google Scholar 

  18. Tundis R, Ursino C, Bonesi M, Loizzo MR, Pellicanò VST, Manfredi IL, Figoli A, Cassano A (2019) Flower and leaf extracts of Sambucus nigra L.: application of membrane processes to obtain fractions with antioxidant and antityrosinase properties. Membranes 9, 127

  19. Luo JQ, Wan YH (2013) Effects of Ph and salt on nanofiltration-a critical review. J Membr Sci 438:18–28

    Article  CAS  Google Scholar 

  20. Choi O, Ingole PG, Park CH (2022) Precision-aiming tuning of membranes prepared by NIPS and its performance enhancement. J Clean Prod 365:132858

    Article  Google Scholar 

  21. Mohammad AW, Teow YH, Chung WL, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    Article  CAS  Google Scholar 

  22. Zhang H, He Q, Luo J, Wan Y, Darling SB (2020) Sharpening nanofiltration: strategies for enhanced membrane selectivity. ACS Appl Mater Interfaces 12:39948–39966

    Article  CAS  PubMed  Google Scholar 

  23. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:1137

    Article  CAS  Google Scholar 

  24. Shang WT, Sun FY, Jia W, Guo JX, Yin SM, Wong PW, An AK (2020) High-performance nanofiltration membrane structured with enhanced stripe nano-morphology. J Membr Sci 600:117852

    Article  Google Scholar 

  25. Wu MY, Yuan JQ, Wu H, Su YL, Yang H, You XD, Zhang RN, He XY, Khan NA, Kasher R, Jiang ZY (2019) Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J Membr Sci 576:131–141

    Article  CAS  Google Scholar 

  26. Yadav D, Karki S, Ingole PG (2022) Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J Environ Chem Eng 10:108109

    Article  CAS  Google Scholar 

  27. Barba FJ, Soto ER, Marszałek K, Kovačević DB, Jambrak AR, Lorenzo JM, Chemat F, Putnik P (2019) Green food processing: concepts, strategies, and tools. Green Food Processing Techniques pp. 1–21

  28. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vien M (2017) Review of green food processing techniques. Preservation, transformation and extraction. Innov Food Sci Emerg Technol 41:357–377

    Article  CAS  Google Scholar 

  29. Conidi C, Muñoz RC, Cassano A (2020) Nanofiltration in beverage industry, Nanotechnology in the Beverage Industry, pp. 525–548

  30. Pant K, Thakur M, Nanda V (2020) Applications of membrane technology in whey processing. application of membrane technology for food processing industries. 1st Edition, CRC Press, eBook ISBN: 9780429276408

  31. Simonic M, Pintaric ZN (2021) Study of acid whey fouling after protein isolation using nanofiltration. Membranes 11:492–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esfandian F, Peyravi M, Ghoreyshi AA, Jahanshahi M, Rad AS (2019) Fabrication of TFC nanofiltration membranes via co-solvent assisted interfacial polymerization for lactose recovery. Arab J Chem 12:5325–5338

    Article  CAS  Google Scholar 

  33. Kentish SE, Rice G (2015) Demineralization of dairy streams and dairy mineral recovery using nanofiltration. Membrane Processing for Dairy Ingredient separation pp. 112–138

  34. Tavares T, Malcata FX (2016) In: Caballero, B., Finglas, P.M., Toldr´a (Eds.), Whey and whey powders, principles and applications of dialysis. Elsevier, Inc., Oxford, UK, pp. 493–497.

  35. Alexandri M, Schneider R, Venus J (2018) Membrane technologies for lactic acid separation from fermentation broths derived from renewable resources. Membranes 8:94–106

    Article  PubMed Central  Google Scholar 

  36. Komesu A, Maciel MRW, Filho RM (2017) Separation and purification technologies for lactic acid – a brief review. BioResources 12:6885–6901

    Article  CAS  Google Scholar 

  37. Sluková M, Hinková A, Henke S, Smrž F, Lukačíková M, Pour V, Bubník Z (2016) Cheese whey treated by membrane separation as a valuable ingredient for barley sourdough preparation. J Food Eng 172:38–47

    Article  Google Scholar 

  38. Ganju S, Gogate PR (2017) A review on approaches for efficient recovery of whey proteins from dairy industry effluents. J Food Eng 215:84–96

    Article  CAS  Google Scholar 

  39. Bansal N, Bhandari B (2016) Functional milk proteins: production and utilization—whey-based ingredients. In: McSweeney P, O’Mahony J (eds) Advanced Dairy Chemistry. Springer, New York, pp 67–98

    Chapter  Google Scholar 

  40. Panghal A, Patidar R, Jaglan S, Chhikara N, Khatkar SK, Gat Y, Sindhu N (2018) Whey valorization: current options and future scenario – a critical review. Nutrition and Food Science 48:520–535

    Article  Google Scholar 

  41. Chavan RS, Shraddha RC, Kumar A, Nalawade T (2015) Whey based beverage: its functionality, formulations, health benefits and applications. J Food Process Technol 6:495

    Google Scholar 

  42. Talebi S, Suarez F, Chen GQ, Chen X, Bathurst K, Kentish SE (2020) Pilot study on the removal of lactic acid and minerals from acid whey using membrane technology. ACS Sustain Chem Eng 8:2742–2752

    Article  CAS  Google Scholar 

  43. Kaya N, Altıok E, Gökkaya DS, Kabay N, OTLEŞ, S. (2019) Demineralization of cheese whey by sequential nanofilteration (NF) and electrodialysis (ED) processes. Journal of Membrane Science and Research 5:250–255

    CAS  Google Scholar 

  44. Marx M, Sixt A, Hofsommer J, Wörthmann M, Kulozik U (2019) Manufacturing of demineralized whey concentrates with extended shelf life: impact of the degree of demineralization on functional and microbial quality criteria. Food Bioprod Process 114:1–11

    Article  CAS  Google Scholar 

  45. Merkel A, Voropaeva D, Ondrušek M (2021) The impact of integrated nanofiltration and electrodialytic processes on the chemical composition of sweet and acid whey streams. J Food Eng 298:110500

    Article  CAS  Google Scholar 

  46. Pires AF, Marnotes NG, Rubio OD, Garcia AC, Pereira CD (2021) Dairy by-products: a review on the valorization of whey and second cheese whey. Foods 10:1067–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Velpula S, Umapathy KS, Thyarla A, Srikanth K, Saraff S (2017) Dairy wastewater treatment by membrane systems - a review. Indian J Pure Appl Biosci 5:389–395

    Article  Google Scholar 

  48. Penttilä PA, Vierros S, Utriainen K, Carl N, Rautkari L, Sammalkorpi M, Österberg M (2019) Phospholipid-based reverse micelle structures in vegetable oil modified by water content, free fatty acid, and temperature. Langmuir 35:8373–8382

    PubMed  PubMed Central  Google Scholar 

  49. Doshi K, Trivedi Y, Ray P, Singh PS (2018) Degumming of crude vegetable oil by membrane separation: probing structure-performance and stability of PVDF membranes. Sep Sci Technol 54:1–10

    Google Scholar 

  50. Subramanian R, Kumar GS, Kuppusamy C (2021) Membrane technology for vegetable oil processing-current status and future prospects. Compr Rev Food Sci Food Saf 20:5015–5042

    Article  Google Scholar 

  51. Li X, Cai W, Wang T, Wu Z, Wang J, He X, Li J (2017) AF2400/PTFE composite membrane for hexane recovery during vegetable oil production. Sep Purif Technol 181:223–229

    Article  CAS  Google Scholar 

  52. Shi GM, Farahani MHDA, Liu JY, Chung TS (2019) Separation of vegetable oil compounds and solvent recovery using commercial organic solvent nanofilteration membranes. J Membr Sci 588:117202–117212

    Article  CAS  Google Scholar 

  53. Coutinho CDM, Chiu MC, Basso RC, Ribeiro APB, Gonçalves LAG, Viotto LA (2009) State of art of the application of membrane technology to vegetable oils: A review. Food Res Int 42:536–550

    Article  CAS  Google Scholar 

  54. Lin KM, Ghazali NF (2021) Nanofiltration of binary palm oil/solvent mixture: experimental and modelling. Materials Today: Proceedings 39:1010–1014

    Google Scholar 

  55. Novello Z, Tres MV, Silva MF, Oliveira JV, Luccio MD (2015) Separation of soyabean oil from liquified n-butane and liquified petroleum gas by membrane separation process. Can J Chem Eng 93:96–101

    Article  CAS  Google Scholar 

  56. Ismail DNFA, Ghazali NF (2018) Separation of fatty acid from palm oil using organic solvent nanofiltration. Malaysian Journal of Analytical Sciences 22:561–569

    Google Scholar 

  57. Orm RB, Citeau M, Comitis A, Savoire R, Schiavo CH, Paternault PS, Carré P, Leao JD, Joffre F (2020) Walnut oil deacidification by liquid-liquid extraction with ethanol in a single- and multistage crossflow process. Oilseeds and fats, crops and lipids 27:35–47

    CAS  Google Scholar 

  58. Li X, Chen B, Cai W, Wang T, Wu Z, Li J (2017) Highly stable PDMS-PTFPMS/PVDF OSN membranes for hexane recovery during vegetable oil production. RSC Adv 7:11381–11388

    Article  CAS  Google Scholar 

  59. Hou ZG, Cao XM, Cao L, Ling GQ, Yu P, M., Yang, P.Z., Jiang, S.T. (2020) The removal of phospholipid from crude rapeseed oil by enzyme-membrane binding. J Food Eng 280:109910–109925

    Article  CAS  Google Scholar 

  60. Sereewatthanawut I, Baptista IIR, Boam AT, Hodgson A, Livingston AG (2011) Nanofiltration process for the nutritional enrichment and refining of rice bran oil. J Food Eng 102:16–24

    Article  CAS  Google Scholar 

  61. Bhattacharjee C, Saxena VK, Dutta S (2017) Fruit juice processing using membrane technology: a review. Innov Food Sci Emerg Technol 43:136–153

    Article  CAS  Google Scholar 

  62. Cai M, Hou W, Lv Y, Sun P (2017) Behavior and rejection mechanisms of fruit juice phenolic compounds in model solution during nanofiltration. J Food Eng 195:97–104

    Article  CAS  Google Scholar 

  63. Pruksasri S, Lanner B, Novalin S (2020) Nanofiltration as a potential process for the reduction of sugar in apple juices on an industrial scale. LWT Food Sci Technol 133:110118

    Article  CAS  Google Scholar 

  64. Sotoft LF, Christensen KV, Andrésen R, Norddahl B (2012) Full scale plant with membrane based concentration of black currant juice on the basis of laboratory and pilot scale tests. Chem Eng Process 54:12–21

    Article  CAS  Google Scholar 

  65. Jordão A, Vilela A, Cosme F (2015) From sugar of grape to alcohol of wine: sensorial impact of alcohol in wine. Beverages 1:292–310

    Article  Google Scholar 

  66. Castaldo L, Narváez A, Izzo L, Graziani G, Gaspari A, Minno GD, Ritieni A (2019) Red wine consumption and cardiovascular health. Molecules 24:3626

    Article  CAS  PubMed Central  Google Scholar 

  67. Banvolgyi S, Bahçeci KS, Vatai G, Bekassy S, Molnar EB (2016) Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels. Food Sci Technol Int 22:677–687

    Article  CAS  PubMed  Google Scholar 

  68. Ivić I, Kopjar M, Jakobek L, Jukić V, Korbar S, Marić B, Mesić J, Pichler A (2021) Influence of processing parameters on phenolic compounds and color of Cabernet Sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration. Processes 9:89–104

    Article  Google Scholar 

  69. Luo J, Hang X, Zhai W, Qi B, Song W, Chen X, Wan Y (2016) Refining sugarcane juice by an integrated membrane process: filtration behavior of polymeric membrane at high temperature. J Membr Sci 509:105–115

    Article  CAS  Google Scholar 

  70. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    Article  CAS  PubMed  Google Scholar 

  71. Río IGD, Fernández J, Lombó F (2018) Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. Int J Antimicrob Agents 52:309–315

    Article  Google Scholar 

  72. Rasouli H, Farazaei MH, Khodarahmi R (2017) Polyphenols and their benefits: a review. Int J Food Prop 20:1700–1741

    CAS  Google Scholar 

  73. Tsibranska I, Simeonov E (2020) On the potential of integrating extraction with nanofiltration for separating and concentrating polyphenols from plant materials. Bul Chem Commun 52:509–518

    Google Scholar 

  74. Balyan U, Sarkar B (2016) Integrated membrane process for purification and concentration of aqueous Syzygium cumini (L.) seed extract. Food Bioprod Process 98:29–43

    Article  CAS  Google Scholar 

  75. Paun G, Neagu E, Tache A, Radu GL, Parvulescu V (2011) Application of the nanofiltration process for concentration of polyphenolic compounds from Geranium robertianum and Salvia officinalis extracts. Chem Biochem Eng Q 25:453–460

    Google Scholar 

  76. Pereira DTV, Marson GV, Barbero GF, Tarone AG, Cazarin CBB, Hubinger MD, Martínez J (2020) Concentration of bioactive compounds from grape marc using pressurized liquid extraction followed by integrated membrane processes. Sep Purif Technol 250:117206

    Article  Google Scholar 

  77. Cissé M, Vaillant F, Pallet D, Dornier M (2011) Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res Int 44:2607–2614

    Article  Google Scholar 

  78. Das B, Sarkar S, Sarkar A, Bhattacharjee S, Bhattacharjee C (2016) Recovery of whey proteins and lactose from dairy waste: a step towards green waste management. Process Saf Environ Prot 101:27–33

    Article  CAS  Google Scholar 

  79. Babenyshev S, Mamay D, Bratsikhin A, Borisenko A, Mamay A, Amanova S (2020) Concentration of cottage cheese whey permeate by nanofiltration. J Hyg Eng Des 33:243–248

    Google Scholar 

  80. Chandrapala J, Duke MC, Gray SR, Weeks M, Palmer M, Vasiljevic T (2016) Nanofiltration and nanodiafiltration of acid whey as a function of pH and temperature. Sep Purif Technol 160:18–27

    Article  CAS  Google Scholar 

  81. Borujeni RT, Akbari A, Gharehbaii A, Lehi AY (2021) Extraction and preparation of dye powders from Reseda luteola L. using membrane processes and its dyeing properties. Environ Technol Innov 21, 101249

  82. Cai M, Xie C, Zhong H, Tian B, Yang K (2021) Identification of anthocyanins and their fouling mechanisms during non-thermal nanofiltration of blueberry aqueous extracts. Membranes 11:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muñoz P, Pérez K, Cassano A, Ruby-Figueroa R (2021) Recovery of anthocyanins and monosaccharides from grape marc extract by nanofiltration membranes. Molecules 26:2003

    Article  PubMed  PubMed Central  Google Scholar 

  84. Conidi C, Cassano A, Caiazzo F, Drioli E (2017) Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J Food Eng 195:1–13

    Article  CAS  Google Scholar 

  85. Filippou P, Mitrouli ST, Vareltzis P (2022) Sequential membrane filtration to recover polyphenols and organic acids from red wine lees: the antioxidant properties of the spray-dried concentrate. Membranes 12:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Acosta O, Vaillant F, Pérez AM, Dornier M (2016) Concentration of polyphenolic compounds in blackberry (Rubus Adeno trichos Schltdl.) Juice by Nanofiltration. J Food Process Eng 40, e12343

  87. Tundis R, Loizzo MR, Bonesi M, Sicari V, Ursino C, Manfredi I, Cassano A (2018) Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. Plant Foods Hum Nutr 73:336–343

    Article  CAS  PubMed  Google Scholar 

  88. Maan AMC, Hofman AH, Vos WM, Kamperman M (2020) Recent developments and practical feasibility of polymer-based antifouling coatings. Adv Func Mater 30:2000936

    Article  CAS  Google Scholar 

  89. Dong Z, Lu J, Wu Y, Meng M, Yu C, Sun C, Muning C, Da Z, Yan Y (2020) Antifouling molecularly imprinted membranes for pretreatment of milk samples: selective separation and detection of lincomycin. Food Chem 333:127477

    Article  CAS  PubMed  Google Scholar 

  90. Li Y, Su Y, Zhao X, He X, Zhang R, Zhao J, Fan X, Jiang Z (2014) Antifouling, high-flux nanofiltration membranes enabled by dual functional polydopamine. ACS Appl Mater Interfaces 6:5548–5557

    Article  CAS  PubMed  Google Scholar 

  91. Ang MBMY, Pereira JM, Trilles CA, Aquino RR, Huang SH, Lee KR, Lai JY (2019) Performance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheres. Sep Purif Technol 210:521–529

    Article  CAS  Google Scholar 

  92. Koulivand H, Shahbazi A, Vatanpour V, Rahmandoust M (2020) Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep Purif Technol 230:115895

    Article  Google Scholar 

  93. Liu Y, Yu Z, Peng Y, Shao L, Li X, Zeng H (2020) A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane. Chem Phys Lett 749:137424

    Article  CAS  Google Scholar 

  94. Ren L, Chen J, Lu Q, Wang C, Han J, Huang K, Pan X, Wu H (2020) Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer. J Membr Sci 597:117641

    Article  CAS  Google Scholar 

  95. Karki S, Ingole PG (2022) Development of polymer-based new high performance thin-film nanocomposite nanofiltration membranes by vapor phase interfacial polymerization for the removal of heavy metal ions. Chem Eng J 446:137303

    Article  CAS  Google Scholar 

  96. Ma T, Su Y, Li Y, Zhang R, Liu Y, He M, Li Y, Dong N, Wu H, Jiang Z (2016) Fabrication of electro-neutral nanofiltration membranes at neutral Ph with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. J Membr Sci 503:101–109

    Article  CAS  Google Scholar 

  97. Li SL, Shan X, Zhao Y, Hu Y (2019) Fabrication of a novel nanofiltration membrane with enhanced performance via interfacial polymerization through the incorporation of a new zwitterionic diamine monomer. ACS Appl Mater Interfaces 11:42846–42855

    Article  CAS  PubMed  Google Scholar 

  98. Liu H, Liu G, Zhang M, Zhao H, Jiang Y, Gao J (2020) Rapid preparation of Tannic acid (TA) based zwitterionic nanofiltration membrane via a multiple layer-by-layer (mLBL) assembly strategy for enhanced antifouling performance. Sep Purif Technol 253:117519

    Article  CAS  Google Scholar 

  99. Ruan H, Li B, Ji J, Sotto A, Van der Bruggen B, Shen J, Gao C (2018) Preparation and characterization of an amphiphilic polyamide nanofiltration membrane with improved antifouling properties by two-step surface modification method. RSC Adv 8:13353–13363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, CSIR-NEIST, Jorhat for his support and keen interest in this work.

Funding

The Department of Science and Technology (DST), New Delhi, India, provided financial support under the DST Nano mission project DST/NM/NT/2018/143 (GPP-0357) and CSIR, New Delhi, India, under the in-house project OLP-2064. DY received fellowship fund from DST, New Delhi, India, the DST/INSPIRE fellowship award No. IF190678. SK received fellowship fund from DST, New Delhi, India, the DST/INSPIRE fellowship award No. IF190333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin G. Ingole.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Karki, S. & Ingole, P.G. Nanofiltration (NF) Membrane Processing in the Food Industry. Food Eng Rev 14, 579–595 (2022). https://doi.org/10.1007/s12393-022-09320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09320-4

Keywords

Navigation