Skip to main content

Advertisement

Log in

Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Algal biorefinery is rising as a prominent solution to economically fulfill the escalating global requirement for nutrition, feed, fuel, and medicines. In recent years, scientific productiveness associated with microalgae-based studies has elaborated in multiplied aspects, while translation to the commercial level continues to be missing. The present microalgal biorefinery has a challenge in long-term viability due to escalated market price of algal-mediated biofuels and bioproducts. Advancements are required in a few aspects like improvement in algae processing, energy investment, and cost analysis of microalgae biorefinery. Therefore, it is essential to recognize the modern work by understanding the knowledge gaps and hotspots driving business scale up. The microalgae biorefinery integrated with energy-based products, bioactive and green compounds, focusing on a circular bioeconomy, is urgently needed. A detailed investigation of techno-economic analysis (TEA) and life cycle assessment (LCA) is important to increase the market value of algal products. This review discusses the valorization of algal biomass for the value-added application that holds a sustainable approach and cost-competitive algal biorefinery. The current industries, policies, technology transfer trends, challenges, and future economic outlook are discussed. This study is an overview through scientometric investigation attempt to describe the research development contributing to this rising field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboelfetoh EF, El-Shenody RA, Ghobara MM (2017) Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess 189(7):1–5

    Article  CAS  Google Scholar 

  • Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11(12):3366

    Article  CAS  Google Scholar 

  • Algatech, (2019) About Algatech. https://www.algatech.com/. Accessed 22 May 2019

  • Algenol Biotech LLC (2019) About Algenol. https://www.algeno.com/. Accessed 15 November 2019

  • AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F (2021) A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ Res 1(194):110672

    Article  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  CAS  PubMed  Google Scholar 

  • Ansari FA, Gupta SK, Bux F (2019) Microalgae: a biorefinary approach to the treatment of aquaculture wastewater. Application of microalgae in wastewater treatment. Springer, Cham, pp 69–83

    Chapter  Google Scholar 

  • Arora K, Kumar P, Bose D, Li X, Kulshrestha S (2021) Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 11(6):1–24

    Article  Google Scholar 

  • Asimakopoulos K, Gavala HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: a review. Chem Eng Sci 348:732–744

    Article  CAS  Google Scholar 

  • Astals S, Musenze RS, Bai X, Tannock S, Tait S, Pratt S, Jensen PD (2015) Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour Technol 181:97–104

    Article  CAS  PubMed  Google Scholar 

  • Astaxanthin market by source (plant, yeast and microbes, marine, petroleum), form (dry, liquid), method of production (biological process, chemical process), application (feed, supplements, food, cosmetics), and region - global forecast to (2022). https://www.marketsandmarkets.com/Market-Reports/astaxanthin-market-162119410.html. Accessed 16 July 2020

  • Babiak W, Krzemińska I (2021) Extracellular polymeric substances (EPS) as microalgal bioproducts: a review of factors affecting EPS synthesis and application in flocculation processes. Energies 14:4007

    Article  CAS  Google Scholar 

  • Banerjee S, Das D, Ghosh AK (2022) Production of bioethanol from microalgal feedstock: a circular biorefinery approach. Potential and challenges of low carbon fuels for sustainable transport. Springer, Singapore, pp 33–65

    Chapter  Google Scholar 

  • Banu JR, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822

    Article  Google Scholar 

  • Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17(5):304

    Article  CAS  PubMed Central  Google Scholar 

  • Barlow J, Sims RC, Quinn JC (2016) Techno-economic and life-cycle assessment of an attached growth algal biorefinery. Bioresour Technol 220:360–368

    Article  CAS  PubMed  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Bartek L, Strid I, Henryson K, Junne S, Rasi S, Eriksson M (2021) Life cycle assessment of fish oil substitute produced by microalgae using food waste. Sustain Prod Consum 27:2002–2021

    Article  Google Scholar 

  • Baweja P, Kumar S, Sahoo D, Levine I (2016) Biology of seaweeds. Seaweed in health and disease prevention. Academic Press, Cambridge, pp 41–106

    Chapter  Google Scholar 

  • Beckstrom BD, Wilson MH, Crocker M, Quinn JC (2020) Bioplastic feedstock production from microalgae with fuel co-products: a techno-economic and life cycle impact assessment. Algal Res 46:101769

    Article  Google Scholar 

  • Bekirogullari M, Figueroa-Torres GM, Pittman JK, Theodoropoulos C (2020) Models of microalgal cultivation for added-value products-a review. Biotechnol Adv 15(44):107609

    Article  Google Scholar 

  • Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Rep 10:117–125

    Article  Google Scholar 

  • Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy 154:1062–1071

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Article  Google Scholar 

  • Bhattacharjee ME (2016) Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 9:43–47

    Article  CAS  Google Scholar 

  • Bhattacharya M, Goswami S (2020) Microalgae–a green multi-product biorefinery for future industrial prospects. Biocatal Agric Biotechnol 25:101580

    Article  Google Scholar 

  • Brasil BD, de Siqueira FG, Salum TF, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89

    Article  Google Scholar 

  • Brownbridge G, Azadi P, Smallbone A, Bhave A, Taylor B, Kraft M (2014) The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour Technol 151:166–173

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yang L, Qiao X, Xue C, Xu J (2021) Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr 23:1–27

    Article  Google Scholar 

  • Carotenoids market by type (astaxanthin, beta-carotene, canthaxanthin, lutein, lycopene, and, zeaxanthin), source (synthetic and natural), application (supplements, food, feed, and cosmetics), and, by region - global trends and, forecasts to (2021) https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html. Accessed 16 July 2020

  • Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S (2021) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498

    Article  Google Scholar 

  • Chen Z, Lee WG (2019) Electroporation for microalgal biofuels: a review. Sustain Energy Fuels 3(11):2954–2967

    Article  CAS  Google Scholar 

  • Chen WH, Lin BJ, Huang MY, Chang JS (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Li Y, Wang C, Guo J, Zhou C, Zhang R, Ma Y, Ma X, Wang L, Cheng Y, Yan X (2022) Integrated marine microalgae biorefineries for improved bioactive compounds: a review. Sci Total Environ 6:152895

    Article  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  PubMed  Google Scholar 

  • Chew KW, Chia SR, Krishnamoorthy R, Tao Y, Chu DT, Show PL (2019) Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour Technol 288:121519

    Article  CAS  PubMed  Google Scholar 

  • Chia WY, Tang D, Khoo KS, Lup A, Chew KW (2020) Nature’s fight against plastic pollution: algae for plastic biodegradation and bioplastics production. Environ Sci Technol 1(4):100065

    Google Scholar 

  • Choudhary P, Malik A, Pant KK (2020) Exploration of a novel biorefinery based on sequential hydropyrolysis and anaerobic digestion of algal biofilm: a comprehensive characterization of products for energy and chemical production. Sustain Energy Fuels 4(3):1481–1495

    Article  CAS  Google Scholar 

  • Chowdhury R, Franchetti M (2017) Life cycle energy demand from algal biofuel generated from nutrients present in the dairy waste. Sustain Prod and Consum 9:22–27

    Google Scholar 

  • Chowdhury H, Loganathan B, Mustary I, Alam F, Mobin SM (2019) Algae for biofuels: the third generation of feedstock. Second and third generation of feedstocks. Elsevier, Amsterdam, pp 323–344

    Chapter  Google Scholar 

  • Chugh D, Viswamalya VS, Das B (2021) Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol 19(1):1–21

    Article  Google Scholar 

  • Daneshvar E, Ok YS, Tavakoli S, Sarkar B, Shaheen SM, Hong H, Luo Y, Rinklebe J, Song H, Bhatnagar A (2021) Insights into upstream processing of microalgae: a review. Bioresourc Techno 1(329):124870

    Article  Google Scholar 

  • Das SK, Sathish A, Stanley J (2018) Production of biofuel and bioplastic from chlorella pyrenoidosa. Mater Today 5(8):16774–16781

    CAS  Google Scholar 

  • Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT (2019) Life cycle evaluation of microalgae biofuels production: effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ 688:112–128

    Article  CAS  PubMed  Google Scholar 

  • Datta A, Hossain A, Roy S (2019) An overview on biofuels and their advantages and disadvantages. Asian J Chem 31:1851–1858

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531

    Article  Google Scholar 

  • Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, Skaggs RL, Venteris ER, Wigmosta MS (2014) Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ Sci Technol 48(10):6035–6042

    Article  CAS  PubMed  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650:2467–2482

    Article  PubMed  Google Scholar 

  • De Corato U, De Bari I, Viola E, Pugliese M (2018) Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high value-added products associated to some emerging markets: a review. Renew Sustain Energ Rev 88:326–346

    Article  Google Scholar 

  • de Morais M, Vaz B, de Morais E, Costa J (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int. https://doi.org/10.1155/2015/835761

    Article  PubMed  PubMed Central  Google Scholar 

  • de Morais MG, de Freitas BC, Moraes L, Pereira AM, Costa JA (2019) Liquid biofuels from microalgae: recent trends. Adv Bioprocess Altern Fuels Biobased Chemicals Bioprod 1:351–372

    Google Scholar 

  • de Souza MF, Rodrigues MA, Freitas SP, da Silva Bon EP (2020) Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. Algal Res 50:101961

    Article  Google Scholar 

  • Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh H, Lam MK, Lim JW, Ho YC, Lee KT, Show PL (2021) Algae biopolymer towards sustainable circular economy. Bioresour Technol 1(325):124702

    Article  Google Scholar 

  • Dietrich K, Dumont MJ, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum 9:58–70

    Article  Google Scholar 

  • Dolganyuk V, Belova D, Babich O, Prosekov A, Ivanova S, Katserov D, Patyukov N, Sukhikh S (2020) Microalgae: a promising source of valuable bioproducts. Biomol 10(8):1153

    CAS  Google Scholar 

  • El-Sayed W, Ibrahim H, Abdul-Raouf U, El-Nagar MM (2016) Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. J Biotechnol Biomater 6(226):2

    Google Scholar 

  • Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T (2020) Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci 11:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan L, Zhang H, Li J, Wang Y, Leng L, Li J, Yao Y, Lu Q, Yuan W, Zhou W (2020) Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: a review. Algal Res 47:101819

    Article  Google Scholar 

  • Fasaei F, Bitter JH, Slegers PM, Van Boxtel AJ (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 1(31):347–362

    Article  Google Scholar 

  • Freitas MV, Pacheco D, Cotas J, Mouga T, Afonso C, Pereira L (2022) Red seaweed pigments from a biotechnological perspective. Phyco 2(1):1–29

    Google Scholar 

  • Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants 6(4):96

    Article  PubMed Central  Google Scholar 

  • Gao G, Burgess JG, Wu M, Wang S, Gao K (2020) Using macroalgae as biofuel: current opportunities and challenges. Bot Mar 63(4):355–370

    Article  CAS  Google Scholar 

  • Gilbert-López B, Mendiola JA, van den Broek LA, Houweling-Tan B, Sijtsma L, Cifuentes A, Herrero M, Ibáñez E (2017) Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res 24:111–121

    Article  Google Scholar 

  • Global Market Insights, Astaxanthin Market Size by Source (Synthetic, Natural), By Application (Dietary Supplement, Personal Care, Pharmaceuticals, Food & Beverages, Animal Feed {Aquaculture, Livestock, Pets}) Industry Outlook Report, Regional Analysis, Application Potential, Pr, Global Market Insights (2019) https://www.gminsights.com/industry-analysis/astaxanthin-market. Accessed 22 Apr 2020

  • Goh B, Chong C, Ong HC, Seljak T, Katrašnik T, Józsa V, Ng JH, Tian B, Karmarkar S, Ashokkumar V (2022) Recent advancements in catalytic conversion pathways for synthetic jet fuel produced from bioresources. Energy Convers Manag 251:114974

    Article  CAS  Google Scholar 

  • Gong J, You F (2014) Optimal design and synthesis of algal biorefinery processes for biological carbon sequestration and utilization with zero direct greenhouse gas emissions: MINLP model and global optimization algorithm. Ind Eng Chem Res 53:1563–1579

    Article  CAS  Google Scholar 

  • González-Fernádez C, Sialve B, Bernet N, Steyer JP (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod Biorefin 6(2):205–218

    Article  Google Scholar 

  • Gue I, Ubando A, Cuello J, Culaba A (2018) Assessing microalgal biodiesel sustainability via MCI and LCA frameworks. IEEE Int Conf Hum Nanotechnol Inf Technol Commun Control Environ Manag. https://doi.org/10.1109/HNICEM.2018.8666405

    Article  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Asraful Alam M, Ho SH, Bai FW, Chang JS (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    Article  CAS  PubMed  Google Scholar 

  • Harvey PJ, Ben-Amotz A (2020) Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Res 50:102002

    Article  Google Scholar 

  • Hemalatha M, Sravan JS, Min B, Mohan SV (2019) Microalgae biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresour Technol 284:424–429

    Article  CAS  PubMed  Google Scholar 

  • Hendricks RC, Bushnell DM, Shouse DT (2011) Aviation fueling: a cleaner, greener approach. Int J Rotat Mach. https://doi.org/10.1155/2011/782969

    Article  Google Scholar 

  • Ho KK, Redan BW (2021) Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 62(2):508–526

    Article  Google Scholar 

  • Hu IC (2019) Production of potential coproducts from microalgae. Biofuels from Algae. Elsevier, Amsterdam, pp 345–358

    Chapter  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186

    Article  CAS  PubMed  Google Scholar 

  • Kannah RY, Kavitha S, Karthikeyan OP, Kumar G, Dai-Viet NV, Banu JR (2021) Techno-economic assessment of various hydrogen production methods–a review. Bioresourc Technol 1(319):124175

    Article  Google Scholar 

  • Kasani AA, Esmaeili A, Golzary A (2022) Software tools for microalgae biorefineries: cultivation, separation, conversion process integration, modeling, and optimization. Algal Res 61:102597

    Article  Google Scholar 

  • Kaur P, Thakur M, Tondan D, Bamrah GK, Misra S, Kumar P, Pandohee J, Kulshrestha S (2021) Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 11(11):1–8

    Article  CAS  Google Scholar 

  • Khalis SA (2018) The effect of compatibilizer addition on Chlorella vulgaris microalgae utilization as a mixture for bioplastic. ES Web Conf. 67:03047

    Article  Google Scholar 

  • Khanra A, Vasistha S, Rai MP (2020a) ZrO2 nanoparticles mediated flocculation and increased lipid extraction in Chlorococcum sp. for biodiesel production: a cost effective approach. Mater Today 28:1847–1852

    CAS  Google Scholar 

  • Khanra A, Vasistha S, Kumar P, Rai MP (2020b) Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3 Biotech 10(8):1–12

    Article  Google Scholar 

  • Klein BC, Chagas MF, Watanabe MD, Bonomi A, Maciel Filho R (2019) Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): a case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renew Sustain Energy Rev 115:109365

    Article  CAS  Google Scholar 

  • Koçer AT, İnan B, Kaptan Usul S, Özçimen D, Yılmaz MT, Işıldak İ (2021) Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol 52:1779–1790

    Article  PubMed  PubMed Central  Google Scholar 

  • Konur O (2021) A review of the research: biodiesel and petrodiesel fuels. Biodiesel Fuels 5:63–87

    Article  Google Scholar 

  • Koutra E, Economou CN, Tsafrakidou P, Kornaros M (2018) Bio-based products from microalgae cultivated in digestates. Trends Biotechnol 36(8):819–833

    Article  CAS  PubMed  Google Scholar 

  • Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 33:125–129

    Article  CAS  PubMed  Google Scholar 

  • Kumar BR, Deviram G, Mathimani T, Duc PA, Pugazhendhi A (2019) Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol 17:583–588

    Article  Google Scholar 

  • Kumar AN, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Mohan SV (2020a) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:122315

    Article  Google Scholar 

  • Kumar AK, Sharma S, Dixit G, Shah E, Patel A (2020b) Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renew Energy 145:1620–1632

    Article  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Verma P (2020c) Bioethanol Production: generation-based comparative status measurements. Biofuel production technologies: critical analysis for sustainability. Springer, Singapore, pp 155–201

    Chapter  Google Scholar 

  • Kuppens T, Van Dael M, Vanreppelen K, Thewys T, Yperman J, Carleer R, Schreurs S, Van Passel S (2015) Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Clean Prod 88:336–344

    Article  CAS  Google Scholar 

  • Kyriakopoulou K, Papadaki S, Krokida M (2015) Life cycle analysis of β-carotene extraction techniques. J Food Eng 167:51–58

    Article  CAS  Google Scholar 

  • Lasta P, Silva P, Caetano PA, Pinheiro PN, Zepka LQ, Jacob-Lopes E (2022) Microalgae application in chemicals, enzymes, and bioactive molecules. Application of microbes in environmental and microbial biotechnology. Springer, Singapore, pp 425–443

    Chapter  Google Scholar 

  • Laurens LM, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, Pienkos PT (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Curr Green Chem 17(2):145–1158

    Google Scholar 

  • Li S, Hu T, Xu Y, Wang J, Chu R, Yin Z, Mo F, Zhu L (2020) A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renew Sust Energ Rev 1(131):110005

    Article  Google Scholar 

  • Li S, Li F, Zhu X, Liao Q, Chang JS, Ho SH (2021) Biohydrogen production from microalgae for environmental sustainability. Chemosphere 1(291):132717

    Google Scholar 

  • Lim J, Gan Y, Ong HC, Lau BF, Chen WH, Chong CT, Ling TC, Klemeš JJ (2021) Utilization of microalgae for bio-jet fuel production in the aviation sector: challenges and perspective. Renew Sust Energ Rev 149:111396

    Article  CAS  Google Scholar 

  • Lin CY, Lu C (2021) Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: a review. Renew Sust Energ Rev 136:110445

    Article  CAS  Google Scholar 

  • Liu Y, Lai YJ, Barbosa TS, Chandra R, Parameswaran P, Rittmann BE (2019) Electro-selective fermentation enhances lipid extraction and biohydrogenation of Scenedesmus acutus biomass. Algal Res 1(38):101397

    Article  Google Scholar 

  • Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H (2021) Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments. Bioresour Technol 337:125398

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Savage PE (2015) Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients. J Supercrit Fluid 99:88–94

    Article  CAS  Google Scholar 

  • Lupatini AL, de Oliveira BL, Colla LM, Costa JA, Canan C, Colla E (2017) Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Int Food Res J 99:1028–1035

    Article  CAS  Google Scholar 

  • Malik S, Khan F, Atta Z, Habib N, Haider MN, Wang N, Alam A, Jambi EJ, Gull M, Mehmood MA, Zhu H (2020) Microalgal flocculation: global research progress and prospects for algal biorefinery. Biotechnol Appl Biochem 67(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Mälkki H, Alanne K (2017) An overview of life cycle assessment (LCA) and research-based teaching in renewable and sustainable energy education. Renew Sustain Energy Rev 69:218–231

    Article  Google Scholar 

  • Mandhata CP, Sahoo CR, Padhy RN (2022) Biomedical applications of biosynthesized gold nanoparticles from cyanobacteria: an overview. Biol Trace Elem Res 27:1–21

    Google Scholar 

  • Mandotra SK, Sharma C, Srivastava N, Ahluwalia AS, Ramteke PW (2021) Current prospects and future developments in algal bio-hydrogen production: a review. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01414-z

    Article  Google Scholar 

  • Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296

    Article  CAS  Google Scholar 

  • Martínez-Gutiérrez E (2018) Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech 8(5):1–8

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–223

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15(2):160–176

    Article  CAS  Google Scholar 

  • Mofijur M, Rahman SA, Nguyen LN, Mahlia TM, Nghiem LD (2022) Selection of microalgae strains for sustainable production of aviation biofuel. Bioresourc Technol 345:126408

    Article  CAS  Google Scholar 

  • Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresou Technol 184:169–178

    Article  Google Scholar 

  • Mohan SV, Hemalatha M, Chakraborty D, Chatterjee S, Ranadheer P, Kona R (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 1(295):122128

    Article  Google Scholar 

  • Monari C, Righi S, Olsen SI (2016) Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: a life-cycle modeling. J Clean Prod 112:4084–4092

    Article  CAS  Google Scholar 

  • Moreira JB, Kuntzler SG, Bezerra PQM, Cassuriaga APA, Zaparoli M, da Silva JLV, Costa JAV, de Morais MG (2022) Recent advances of microalgae exopolysaccharides for application as bioflocculants. Polysaccharides 3(1):264–276

    Article  CAS  Google Scholar 

  • Moshood TD, Nawanir G, Mahmud F (2021) Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Int J Environ Probl 5:100207

    CAS  Google Scholar 

  • Mu D, Min M, Krohn B, Mullins KA, Ruan R, Hill J (2014) Life cycle environmental impacts of wastewater-based algal biofuels. Environ Sci Technol 48(19):11696–11704

    Article  CAS  PubMed  Google Scholar 

  • Mu N, Mehar JG, Mudliar SN, Shekh AY (2019) Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Compr Rev Food Sci 18(6):1882–1897

    Article  CAS  Google Scholar 

  • Nagi GK, Minhas AK, Gaur S, Jain P, Mandal S (2021) Integration of algal biofuels with bioremediation coupled industrial commodities towards cost-effectiveness front. Energy Res 1:489

    Google Scholar 

  • Nahvi I, Belkahla S, Asiri SM, Rehman S (2021) Overview and prospectus of algal biogenesis of nanoparticles. Microbial nanotechnology: green synthesis and applications. Springer, Singapore, pp 121–134

    Chapter  Google Scholar 

  • Negi S, Singh V (2018) Algae: a potential source for nanoparticle synthesis. J Appl Natl Sci 10(4):1134–1140

    Article  CAS  Google Scholar 

  • Niizawa I, Espinaco BY, Leonardi JR, Heinrich JM, Sihufe GA (2018) Enhancement of astaxanthin production from Haematococcus pluvialis under autotrophic growth conditions by a sequential stress strategy. Prep Biochem Biotechnol 48(6):528–534

    Article  CAS  PubMed  Google Scholar 

  • Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17(11):640

    Article  PubMed Central  Google Scholar 

  • O’Neil GW, Knothe G, Reddy CM (2019) Jet biofuels from algae. Biofuels from algae. Elsevier, Amsterdam, pp 359–395

    Chapter  Google Scholar 

  • Obata O, Akunna J, Bockhorn H, Walker G (2016) Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol 2(1):134–145

    Article  CAS  Google Scholar 

  • Olguín EJ, Castillo OS, Mendoza A, Tapia K, González-Portela RE, Hernández-Landa VJ (2015) Dual purpose system that treats anaerobic effluents from pig waste and produce Neochloris oleoabundans as lipid rich biomass. N Biotechnol 32(3):387–395

    Article  PubMed  Google Scholar 

  • Orfanoudaki M, Hartmann A, Alilou M, Gelbrich T, Planchenault P, Derbré S, Schinkovitz A, Richomme P, Hensel A, Ganzera M (2020) Absolute configuration of mycosporine-like amino acids, their wound healing properties and in vitro anti-aging effects. Mar Drugs 18(1):35

    Article  CAS  Google Scholar 

  • Özçimen D, İnan B, Biernat K (2015) An overview of bioethanol production from algae. Biofuels-Status Perspect 30:141–162

    Google Scholar 

  • Pacheco R, Ferreira AF, Pinto T, Nobre BP, Loureiro D, Moura P, Gouveia L, Silva CM (2015) The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manage 89:789–797

    Article  Google Scholar 

  • Pan J, Ma J, Zhai L, Luo T, Mei Z, Liu H (2019) Achievements of biochar application for enhanced anaerobic digestion: a review. Bioresour Technol 1(292):122058

    Article  Google Scholar 

  • Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190. https://doi.org/10.1016/j.algal.2016.06.007

    Article  Google Scholar 

  • Parker ER (2021) The influence of climate change on skin cancer incidence–a review of the evidence. Int J Womens Dermatol 7(1):17–27

    Article  PubMed  Google Scholar 

  • Pérez-López P, Montazeri M, Feijoo G, Moreira MT, Eckelman MJ (2018) Integrating uncertainties to the combined environmental and economic assessment of algal biorefineries: a Monte Carlo approach. Sci Total Environ 626:762–775. https://doi.org/10.1016/j.scitotenv.2017.12.339

    Article  CAS  PubMed  Google Scholar 

  • Persiani A, Pergola M, Ingrao C, Palese AM, Celano G (2021) Supply of agricultural biomass residues for on-farm composting: a cross-analysis of relevant data sets for the most sustainable management combination. Agroecol Sustain Food Syst 45(1):134–156

    Article  Google Scholar 

  • Pessôa LC, Deamici KM, Pontes LAM, Druzian JI, de Jesus Assis D (2021) Technological prospection of microalgae-based biorefinery approach for effluent treatment. Algal Res 60:102504

    Article  Google Scholar 

  • Peter AP, Koyande AK, Chew KW, Ho SH, Chen WH, Chang JS, Krishnamoorthy R, Banat F, Show PL (2022) Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: current status and future challenges. Renew Sust Energ Rev 1(154):111852

    Article  Google Scholar 

  • Pierobon SC, Cheng X, Graham PJ, Nguyen B, KarakolisSinton EGD (2018) Emerging microalgae technology: a review. Sustain Energy Fuels 2(1):13–38

    Article  CAS  Google Scholar 

  • Posada JA, Brentner LB, Ramirez A, Patel MK (2016) Conceptual design of sustainable integrated microalgae biorefineries: parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res 17:113–131

    Article  Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  PubMed  Google Scholar 

  • Rahbari A, Shirazi A, Pye J (2021) Methanol fuel production from solar-assisted supercritical water gasification of algae: a techno-economic annual optimisation. Sustain Energy Fuels 5(19):4913–4931

    Article  CAS  Google Scholar 

  • Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 13(8):2009. https://doi.org/10.3389/fmicb.2017.02009

    Article  Google Scholar 

  • Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404

    Article  Google Scholar 

  • Sajid Z, Zhang Y, Khan F (2016) Process design and probabilistic economic risk analysis of bio-diesel production. Sustain Prod Consum 5:1–15

    Article  Google Scholar 

  • Santos-Sánchez NF, Valadez-Blanco R, Hernández-Carlos B, Torres-Ariño A, Guadarrama-Mendoza PC, Salas-Coronado R (2016) Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Appl Microbiol Biot 100(20):8667–8684

    Article  Google Scholar 

  • Saral JS, Satheesh AR, Ranganathan P (2022) Economic and environmental analysis of algal biorefinery for the production of renewable fuels and co-product. Energy Convers Manag 22:100189

    Google Scholar 

  • Saravanan AP, Pugazhendhi A, Mathimani T (2020) A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps. Fuel 272:117635

    Article  CAS  Google Scholar 

  • Sarma S, Sharma S, Rudakiya D, Upadhyay J, Rathod V, Patel A, Narra M (2021) Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 11(8):1–29

    Article  Google Scholar 

  • Sathasivam R, Guo R, Wang H, Lim WA, Ki JS (2018) Expressed sequence tag library of the marine green alga Tetraselmis suecica: a focus on stress-related genes for marine pollution. J Appl Phycol 30(4):2387–2402

    Article  CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Baral NR, Manandhar A (2016a) Technoeconomic analysis and life cycle assessment of bioenergy systems. Advances in bioenergy. Elsevier, Amsterdam, pp 189–247

    Google Scholar 

  • Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M (2016b) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products Front. Plant Sci 7:531

    Google Scholar 

  • Sharma P, Srinivas GL, Varjani S, Kumar S (2021) Emerging microalgae-based technologies in biorefinery and risk assessment issues: bioeconomy for sustainable development. Sci Total Environ 16:152417

    Google Scholar 

  • Sharma R, Mishra A, Pant D, Malaviya P (2022) Recent advances in microalgae-based remediation of industrial and non-industrial wastewaters with simultaneous recovery of value-added products. Bioresourc Technol 1(344):126129

    Article  Google Scholar 

  • Shourie A, Vijayalakshmi U, Singh A (2022) Bioactive compounds from microalgae. An integration of phycoremediation processes in wastewater treatment. Elsevier, Cambridge, pp 503–528

    Chapter  Google Scholar 

  • Show KY, Yan Y, Ling M, Ye G, Li T, Lee DJ (2018) Hydrogen production from algal biomass–advances, challenges and prospects. Bioresour Technol 257:290–300

    Article  CAS  PubMed  Google Scholar 

  • da Silva Vaz B, Moreira JB, de Morais MG, Costa JA (2016a) Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 7:73–77

    Article  Google Scholar 

  • Silva CM, Ferreira AF, Dias AP, Costa M (2016b) A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. J Clean Prod 30:58–67

    Article  Google Scholar 

  • Silva SC, Ferreira IC, Dias MM, Barreiro MF (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules 25(15):3406. https://doi.org/10.3390/molecules25153406

    Article  CAS  PubMed Central  Google Scholar 

  • Singh G, Patidar SK (2021) Development and applications of attached growth system for microalgae biomass production. Bio Energy Res 14(3):709–722

    CAS  Google Scholar 

  • Singh N, Batghare AH, Choudhury BJ, Goyal A, Moholkar VS (2020) Microalgae based biorefinery: Assessment of wild fresh water microalgal isolate for simultaneous biodiesel and β-carotene production. Bioresour Technol Rep 11:100440

    Article  Google Scholar 

  • Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G (2020) Small-scale biomass gasification systems for power generation (< 200 kW class): a review Renew. Sustain Energy Rev 117:109486

    Article  CAS  Google Scholar 

  • Sodano V, Gorgitano MT, Quaglietta M, Verneau F (2016) Regulating food nanotechnologies in the European Union: open issues and political challenges. Trends Food Sci Technol 54:216–226

    Article  CAS  Google Scholar 

  • Stark S, Biber-Freudenberger L, Dietz T, Escobar N, Förster JJ, Henderson J, Laibach N, Börner J (2022) Sustainability implications of transformation pathways for the bioeconomy. Sustain Prod Consum 29:215–227

    Article  Google Scholar 

  • Strauch SM, do Nascimento-Coutinho PB (2021) Bioactive molecules from microalgae. Natural bioactive compounds. Academic Press, London, pp 453–470

    Chapter  Google Scholar 

  • Strazza C, Magrassi F, Gallo M, Del Borghi A (2015) Life cycle assessment from food to food: a case study of circular economy from cruise ships to aquaculture. Sustain Prod Consum 2:40–51

    Article  Google Scholar 

  • Sun Z, Li T, Zhou ZG, Jiang Y (2015) Microalgae as a source of lutein: chemistry, biosynthesis, and carotenogenesis. Microalgae Biotechnol 1:37–58

    Article  Google Scholar 

  • Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11(1):1–16

    Article  Google Scholar 

  • Sun CH, Fu Q, Liao Q, Xia A, Huang Y, Zhu X, Reungsang A, Chang HX (2019) Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 171:1033–1045

    Article  Google Scholar 

  • Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, Szentesi P, Keller-Pintér A (2019) Astaxanthin: a potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev. https://doi.org/10.1155/2019/3849692

    Article  PubMed  PubMed Central  Google Scholar 

  • Taelman SE, De Meester S, Van Dijk W, Da Silva V, Dewulf J (2015) Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resour Conserv Recycl 101:61–72

    Article  Google Scholar 

  • Talwar N, Holden NM (2022) The limitations of bioeconomy LCA studies for understanding the transition to sustainable bioeconomy. Int J Life Cycle Assess 27:680–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang DY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020a) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997

    Article  CAS  PubMed  Google Scholar 

  • Tang DYY, Yew GY, Koyande AK, Chew KW, Vo DVN, Show PL (2020b) Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ Chem Lett 18:1967–1985

    Article  CAS  Google Scholar 

  • Tedesco S, Hurst G, Randviir E, Francavilla M (2021) A comparative investigation of non-catalysed versus catalysed microwave-assisted hydrolysis of common North and South European seaweeds to produce biochemicals. Algal Res 60:102489

    Article  Google Scholar 

  • Telli M, Şahin G (2020) Effects of gradual and sudden changes of salinity and light supply for astaxanthin production in Haematococcus pluvialis (Chlorophyceae). Fundam Appl Limnol 28:11–17

    Article  Google Scholar 

  • Tham PE, Ng YJ, Vadivelu N, Lim HR, Khoo KS, Chew KW, Show PL (2022) Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. Bioresourc Technol 346:126558

    Article  CAS  Google Scholar 

  • Thomassen G, Vila UE, Van Dael M, Lemmens B, Van Passel S (2016) A techno-economic assessment of an algal-based biorefinery. Clean Technol Environ Policy 18(6):1849–1862

    Article  CAS  Google Scholar 

  • Thomassen G, Van Dael M, Van Passel S (2018) The potential of microalgae biorefineries in Belgium and India: an environmental techno-economic assessment. Bioresourc Technol 267:271–280

    Article  CAS  Google Scholar 

  • Togarcheti SC, Kumar Mediboyina M, Chauhan VS, Mukherji S, Ravi S, Mudliar SN (2017) Life cycle assessment of microalgae-based biodiesel production to evaluate the impact of biomass productivity and energy source. Resour Conserv Recycl 122:286–294

    Article  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery—how to make sense? Renew Sustain Energy Rev 47:295–307

    Article  CAS  Google Scholar 

  • Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (2008) Analysis, synthesis and design of chemical processes. Pearson Education, London

    Google Scholar 

  • Vargas-Estrada L, Longoria A, Arenas E, Moreira J, Okoye PU, Bustos-Terrones Y, Sebastian PJ (2021) A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. BioEnergy Res 1:1–16

    Google Scholar 

  • Vasistha S, Khanra A, Rai MP (2021a) Influence of microalgae-ZnO nanoparticle association on sewage wastewater towards efficient nutrient removal and improved biodiesel application: an integrated approach. J Water Process Eng 39:101711

    Article  Google Scholar 

  • Vasistha S, Khanra A, Clifford M, Rai MP (2021b) Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: a review. Renew Sustain Energy Rev 137:110498

    Article  CAS  Google Scholar 

  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C (2015) Food and feed products from micro-algae: Market opportunities and challenges for the EU. Food Sci Technol 42(1):81–92. https://doi.org/10.1016/j.tifs.2014.12.004

    Article  CAS  Google Scholar 

  • Villarruel-López A, Ascencio F, Nuño K (2017) Microalgae, a potential natural functional food source–a review. Pol J Food Nutr Sci 67(4):114–126

    Article  Google Scholar 

  • Wang Q, Oshita K, Nitta T, Takaoka M (2020) Evaluation of a sludge-treatment process comprising lipid extraction and drying using liquefied dimethyl ether. Environ Technol. https://doi.org/10.1080/09593330.2020.1730982

    Article  PubMed  Google Scholar 

  • Why ES, Ong HC, Lee HV, Gan YY, Chen WH, Chong CT (2019) Renewable aviation fuel by advanced hydroprocessing of biomass: challenges and perspective. Energy Convers Manag 199:112015

    Article  CAS  Google Scholar 

  • Wu W, Chang JS (2019) Integrated algal biorefineries from process systems engineering aspects: a review. Biores Technol 291:121939

    Article  CAS  Google Scholar 

  • Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X (2021) Research advancement and commercialization of microalgae edible oil: a review. J Sci Food Agric 101(14):5763–5774

    Article  CAS  PubMed  Google Scholar 

  • Yadav K, Rai MP (2022) An overview of the algal biofuel technology: key challenges and future directions. Handbook of algal biofuels. Elsevier, Cambridge, pp 547–565

    Chapter  Google Scholar 

  • Yadav G, Dash SK, Sen R (2019) A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Sci Total Environ 688:129–135

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Dubey BK, Sen R (2020) A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod 258:120703

    Article  CAS  Google Scholar 

  • Yaşar F (2020) Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 264:116817

    Article  Google Scholar 

  • Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56. https://doi.org/10.3389/fmicb.2015.00056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zappi ME, Bajpai R, Hernandez R, Mikolajczyk A, Lord Fortela D, Sharp W, Chirdon W, Zappi K, Gang D, Nigam KD, Revellame ED (2019) Microalgae culturing to produce biobased diesel fuels: an overview of the basics, challenges, and a look toward a true biorefinery future. Ind Eng Chem Res 58(35):15724–15746

    Article  CAS  Google Scholar 

  • Zhang R, Parniakov O, Grimi N, Lebovka N, Marchal L, Vorobiev E (2019) Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp. Bioprocess Biosyst Eng 42(2):173–186

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang F, Wu YR (2021) Emerging technologies for conversion of sustainable algal biomass into value-added products: a state-of-the-art review. Sci Total Environ 1(784):147024

    Article  Google Scholar 

Download references

Acknowledgements

Author MPR expresses her gratitude to Mission Innovation India Unit, Department of Biotechnology, New Delhi (INDIA) for financial support [file no.BT/PR31218/PBD/26/771/2019].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Prakash Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K., Vasistha, S., Nawkarkar, P. et al. Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges. 3 Biotech 12, 244 (2022). https://doi.org/10.1007/s13205-022-03288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03288-y

Keywords

Navigation