Skip to main content

Advertisement

Log in

Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae

  • Review
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The diverse colors and significant health benefits of some natural pigments, such as phycobiliproteins and carotenoids, have made them valuable compounds in various industries, including food, cosmetics, poultry, and pharmaceutical. Phycocyanin, astaxanthin, β-carotene, and lutein are the main examples of high-value pigments found in natural resources, specifically microalgae. The convenience of using microalgae as a promising resource for these four pigments have been investigated in recent decades. The solvent extraction method is one of the most widely used techniques for separating natural components such as pigments from microalgal sources. However, high solvent and energy consumption, toxicity of some solvents, and low extraction efficiency are some of the disadvantages of the solvent extraction process. Several extraction procedures called green techniques have been introduced and developed as alternatives to conventional solvent extraction to overcome the challenges of traditional extraction. The green techniques include ultrasound-assisted extraction, microwave-assisted extraction, pulsed-field electric-assisted extraction, pressurized liquid extraction, aqueous two-phase system, and supercritical fluid extraction. This review introduces the green extraction techniques and summarizes some of the advantages and drawbacks of these procedures compared to traditional extraction methods. Also, recent advances in the novel extraction processes for isolating phycocyanin, astaxanthin, β-carotene, and lutein are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2021 Ultrasonics Sonochemistry

Fig. 3
Fig. 4

Copyright 2021

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 2021 American Chemical Society

Fig. 12

Similar content being viewed by others

References

  • Ahirwar A, Meignen G, Khan M, Khan N, Rai A, Schoefs B, Marchand J, Varjani S, Vinayak V (2021) Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01965-1

    Article  Google Scholar 

  • Alvarez-Rivera G, Bueno M, Ballesteros-Vivas D, Mendiola JA, Ibañez E (2020) Pressurized liquid extraction. Liquid-phase extraction. Elsevier, Amsterdam, pp 375–398

    Google Scholar 

  • Arad SM, Yaron A (1992) Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci Technol 3:92–97

    CAS  Google Scholar 

  • Arnal E, Miranda M, Johnsen-Soriano S, Alvarez-Nölting R, Díaz-Llopis M, Araiz J, Cervera E, Bosch-Morell F, Romero FJ (2009) Beneficial effect of docosahexanoic acid and lutein on retinal structural, metabolic, and functional abnormalities in diabetic rats. Curr Eye Res 34(11):928–938

    CAS  PubMed  Google Scholar 

  • Baby AR, Morocho-Jácome AL (2021) Dermocosmetic applications of microalgal pigments. Advances in applied microbiology, vol 117. Elsevier, Amsterdam, pp 63–93

    Google Scholar 

  • Balti R, Zayoud N, Hubert F, Beaulieu L, Massé AJS, Technology P (2021) Fractionation of Arthrospira platensis (Spirulina) water soluble proteins by membrane diafiltration. Sep Purif Technol 256:117756

    CAS  Google Scholar 

  • Barba FJ, Grimi N, Vorobiev E (2015) New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 7(1):45–62

    CAS  Google Scholar 

  • Basheer C, Alhooshani K, Nuhu A, Kanimozhi S, Lee H (2012) 3.34 sample preparation of complex biological samples in the analysis of trace-level contaminants

  • Bauer A, Minceva M (2019) Direct extraction of astaxanthin from the microalgae Haematococcus pluvialis using liquid–liquid chromatography. RSC Adv 9(40):22779–22789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56(13):2209–2222

    CAS  PubMed  Google Scholar 

  • Belwal T, Chemat F, Venskutonis PR, Cravotto G, Jaiswal DK, Bhatt ID, Devkota HP, Luo Z (2020) Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal Chem 127:115895

    CAS  Google Scholar 

  • Bhat VB, Madyastha K (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275(1):20–25

    CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33

    PubMed  PubMed Central  Google Scholar 

  • Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 49(4):313–326

    CAS  PubMed  Google Scholar 

  • Carullo D, Donsì F, Ferrari G, Pataro GJAR (2021) Extraction improvement of water-soluble compounds from Arthrospira platensis through the combination of high-shear homogenization and pulsed electric fields. Algal Res 57:102341

    Google Scholar 

  • Casella P, Marino T, Iovine A, Larocca V, Balducchi R, Musmarra D, Molino A (2021) Optimization of Lutein extraction from scenedesmus almeriensis using pressurized liquid extraction. Chem Eng Trans 87:475–480

    Google Scholar 

  • Castro-López C, Rojas R, Sánchez-Alejo EJ, Niño-Medina G, Martínez-Ávila GC (2016) Phenolic compounds recovery from grape fruit and by-products: an overview of extraction methods. Grape Wine Biotechnol 5:103–123

    Google Scholar 

  • Chakdar H, Pabbi S (2017) Algal pigments for human health and cosmeceuticals. Algal green chemistry. Elsevier, Amsterdam, pp 171–188

    Google Scholar 

  • Chan CH, Yusoff R, Ngoh GC (2015) Assessment of scale-up parameters of microwave-assisted extraction via the extraction of flavonoids from cocoa leaves. Chem Eng Technol 38(3):489–496

    CAS  Google Scholar 

  • Chang Y-K, Show P-L, Lan JC-W, Tsai J-C, Huang C-R (2018) Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. Biores Technol 270:320–327

    CAS  Google Scholar 

  • Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

  • Cheng X, Riordon J, Nguyen B, Ooms MD, Sinton D (2017) Hydrothermal disruption of algae cells for astaxanthin extraction. Green Chem 19(1):106–111

    CAS  Google Scholar 

  • Cheng X, Qi Z, Burdyny T, Kong T, Sinton D (2018) Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. Biores Technol 250:481–485

    CAS  Google Scholar 

  • Choi WY, Lee HY (2018) Effect of ultrasonic extraction on production and structural changes of C-phycocyanin from marine Spirulina maxima. Int J Mol Sci 19(1):220

    PubMed  PubMed Central  Google Scholar 

  • Choi S-A, Oh Y-K, Lee J, Sim SJ, Hong ME, Park J-Y, Kim M-S, Kim SW, Lee J-S (2019) High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Biores Technol 274:120–126

    CAS  Google Scholar 

  • Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11

    CAS  PubMed  Google Scholar 

  • Christaki E, Bonos E, Florou-Paneri P (2015) Innovative microalgae pigments as functional ingredients in nutrition. Handbook of marine microalgae. Elsevier, Amsterdam, pp 233–243

    Google Scholar 

  • D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev 58:832–841

    Google Scholar 

  • De la Guardia M, Armenta S (2011) Greening sample treatments. Comprehensive analytical chemistry, vol 57. Elsevier, Amsterdam, pp 87–120

    Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    CAS  PubMed  Google Scholar 

  • Denery JR, Dragull K, Tang C, Li QX (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501(2):175–181

    CAS  Google Scholar 

  • Deniz I, Ozen MO, Yesil-Celiktas O (2016) Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. J Supercrit Fluids 108:13–18

    CAS  Google Scholar 

  • Desai RK, Streefland M, Wijffels RH, Eppink MH (2016) Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem 18(5):1261–1267

    CAS  Google Scholar 

  • D’Este M, De Francisci D, Angelidaki I (2017) Novel protocol for lutein extraction from microalga Chlorella vulgaris. Biochem Eng J 127:175–179

    CAS  Google Scholar 

  • Dianursanti ICM, Taurina Z (2018) Optimization of phycocyanin extraction from microalgae Spirulina platensis by sonication as antioxidant. In: AIP conference proceedings

  • Easmin MS, Sarker MZI, Ferdosh S, Shamsudin SH, Yunus KB, Uddin MS, Sarker MMR, Akanda MJH, Hossain MS, Khalil HA (2015) Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. J Chem Technol Biotechnol 90(6):981–991

    CAS  Google Scholar 

  • Ekpe L, Inaku K, Ekpe V (2018) Antioxidant effects of astaxanthin in various diseases—a review. J Mol Pathophysiol 7(1):1–6

    Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14

    CAS  PubMed  Google Scholar 

  • Fábryová T, Cheel J, Kubáč D, Hrouzek P, Tůmová L, Kopecký J (2019) Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res 41:101574

    Google Scholar 

  • Falquet J, Hurni JP (1997) The nutritional aspects of Spirulina. Antenna Foundation. https://www.antenna.ch/wp-content/uploads/2017/03/AspectNut_UK.pdf. Accessed 25 July 2017

  • Fernández-Sevilla JM, Fernández FA, Grima EM (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86(1):27–40

    PubMed  Google Scholar 

  • Ferreira-Santos P, Nunes R, De Biasio F, Spigno G, Gorgoglione D, Teixeira JA, Rocha CM (2020) Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. LWT 128:109491

    CAS  Google Scholar 

  • Ferreira-Santos P, Miranda SM, Belo I, Spigno G, Teixeira JA, Rocha CM (2021) Sequential multi-stage extraction of biocompounds from Spirulina platensis: combined effect of ohmic heating and enzymatic treatment. Innov Food Sci Emerg Technol 71:102707

    CAS  Google Scholar 

  • Garcia ES, Ruiz CAS, Tilaye T, Eppink MH, Wijffels RH, van den Berg C (2018) Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two phase system. Sep Purif Technol 204:56–65

    Google Scholar 

  • Giorgis M, Garella D, Cena C, Boffa L, Cravotto G, Marini E (2017) An evaluation of the antioxidant properties of Arthrospira maxima extracts obtained using non-conventional techniques. Eur Food Res Technol 243(2):227–237

    CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14(1):47–77

    CAS  PubMed  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6(2):105–112

    CAS  Google Scholar 

  • Gomez PI, Barriga A, Cifuentes AS, Gonzalez MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol Res 36(2):185–192

    CAS  PubMed  Google Scholar 

  • Gómez-Loredo A, González-Valdez J, Rito-Palomares M (2015) Insights on the downstream purification of fucoxanthin, a microalgal carotenoid, from an aqueous two-phase system stream exploiting ultrafiltration. J Appl Phycol 27(4):1517–1523

    Google Scholar 

  • Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412

    CAS  PubMed  Google Scholar 

  • Gong M, Wang Y, Bassi A (2017) Process analysis and modeling of a single-step lutein extraction method for wet microalgae. Appl Microbiol Biotechnol 101(22):8089–8099

    CAS  PubMed  Google Scholar 

  • Gong M, Li X, Bassi A (2018) Investigation of simultaneous lutein and lipid extraction from wet microalgae using Nile Red as solvatochromic shift probe. J Appl Phycol 30(3):1617–1627

    CAS  Google Scholar 

  • Goodman DS (1984) Vitamin A and retinoids in health and disease. N Engl J Med 310(16):1023–1031

    CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011a) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011b) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadiyanto H, Suttrisnorhadi S (2016) Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emir J Food Agric 28:227–234

    Google Scholar 

  • Hadiyanto H, Marsya M, Fatkhiyatul P (2015) Improved yield of β-carotene from microalgae Spirulina platensis using ultrasound assisted extraction. Jurnal Teknologi. https://doi.org/10.11113/jt.v77.4482

    Article  Google Scholar 

  • Hassim N, Markom M, Anuar N, Dewi KH, Baharum SN, Mohd Noor N (2015) Antioxidant and antibacterial assays on polygonum minus extracts: different extraction methods. Int J Chem Eng 2015:1–10

    Google Scholar 

  • Herrero M, del Pilar Sánchez-Camargo A, Cifuentes A, Ibáñez E (2015) Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Anal Chem 71:26–38

    CAS  Google Scholar 

  • Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J Appl Phycol 12(3–5):435–439

    CAS  Google Scholar 

  • Hojnik M, Škerget M, Knez Ž (2008) Extraction of lutein from Marigold flower petals–Experimental kinetics and modelling. LWT-Food Sci Technol 41(10):2008–2016

    CAS  Google Scholar 

  • Huang W-C, Liu H, Sun W, Xue C, Mao X (2018) Effective astaxanthin extraction from wet Haematococcus pluvialis using switchable hydrophilicity solvents. ACS Sustain Chem Eng 6(2):1560–1563

    CAS  Google Scholar 

  • İlter I, Akyıl S, Demirel Z, Koç M, Conk-Dalay M, Kaymak-Ertekin F (2018) Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J Food Compos Anal 70:78–88

    Google Scholar 

  • Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18(1):1–18

    Google Scholar 

  • Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7(1):18

    PubMed  PubMed Central  Google Scholar 

  • Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL (2019) Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. Biores Technol 290:121794

    CAS  Google Scholar 

  • Khoo KS, Ooi CW, Chew KW, Foo SC, Lim JW, Tao Y et al (2021) Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids. Chem Eng J 411:128510

    CAS  Google Scholar 

  • Latowski D, Szymanska R, Strzałka K (2014) Carotenoids involved in antioxidant system of chloroplasts. Oxidative damage to plants. Elsevier, Amsterdam, pp 289–319

    Google Scholar 

  • Li Z, Pei Y, Wang H, Fan J, Wang J (2010) Ionic liquid-based aqueous two-phase systems and their applications in green separation processes. Trends Anal Chem 29(11):1336–1346

    CAS  Google Scholar 

  • Liu ZW, Zeng XA, Cheng JH, Liu DB, Aadil RM (2018) The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 53(9):2212–2219

    CAS  Google Scholar 

  • Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM, Ariyadasa TU, Nimarshana PHV, Malik A (2020) Astaxanthin accumulation in the green microalga Haematococcus Pluvialis: effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnol Reports 28:e00538

    Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167

    CAS  PubMed  Google Scholar 

  • Luengo E, Martínez JM, Bordetas A, Álvarez I, Raso J (2015) Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innov Food Sci Emerg Technol 29:15–22

    CAS  Google Scholar 

  • Luo X, Smith P, Raston C, Zhang W (2016) Vortex fluidic device-intensified aqueous two phase extraction of C-phycocyanin from Spirulina maxima. ACS Sustain Chem Eng 4(7):3905–3911

    CAS  Google Scholar 

  • Mandal S, Mandal V, Das A (2015) Classification of extraction methods. Essentials of botanical extraction. Elsevier, Amsterdam, pp 83–136

    Google Scholar 

  • Martínez JM, Luengo E, Saldaña G, Álvarez I, Raso J (2017) C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res Int 99:1042–1047

    PubMed  Google Scholar 

  • McGrane MM (2007) Vitamin A regulation of gene expression: molecular mechanism of a prototype gene. J Nutr Biochem 18(8):497–508

    CAS  PubMed  Google Scholar 

  • Mehariya S, Iovine A, Di Sanzo G, Larocca V, Martino M, Leone GP, Casella P, Karatza D, Marino T, Musmarra D (2019) Supercritical fluid extraction of lutein from Scenedesmus almeriensis. Molecules 24(7):1324

    PubMed  PubMed Central  Google Scholar 

  • Menegotto ALL, Fernandes IA, Bucior D, Balestieri BP, Colla LM, Abirached C, Franceschi E, Steffens J, Valduga E (2021) Purification of protein from Arthrospira platensis using aqueous two-phase system associate with membrane separation process and evaluation of functional properties. J Appl Phycol 33(5):2967–2982

    CAS  Google Scholar 

  • Mohamadnia S, Tavakoli O, Faramarzi MA, Shamsollahi Z (2020) Production of fucoxanthin by the microalga Tisochrysis lutea: a review of recent developments. Aquaculture 516:734637

    CAS  Google Scholar 

  • Molino A, Rimauro J, Casella P, Cerbone A, Larocca V, Chianese S, Karatza D, Mehariya S, Ferraro A, Hristoforou E (2018a) Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J Biotechnol 283:51–61

    CAS  PubMed  Google Scholar 

  • Molino A, Rimauro J, Casella P, Cerbone A, Larocca V, Chianese S, Karatza D, Mehariya S, Ferraro A, Hristoforou E (2018b) Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J Biotechnol 283:51–61

    CAS  PubMed  Google Scholar 

  • Molino A, Larocca V, Di Sanzo G, Martino M, Casella P, Marino T, Karatza D, Musmarra D (2019) Extraction of bioactive compounds using supercritical carbon dioxide. Molecules 24(4):782

    PubMed  PubMed Central  Google Scholar 

  • Moraes CC, Sala L, Cerveira GP, Kalil SJ (2011) C-phycocyanin extraction from Spirulina platensis wet biomass. Braz J Chem Eng 28(1):45–49

    CAS  Google Scholar 

  • Mulders KJ, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50(2):229–242

    CAS  PubMed  Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703(1):8–18

    CAS  PubMed  Google Scholar 

  • Nitsos C, Filali R, Taidi B, Lemaire J (2020) Current and novel approaches to downstream processing of microalgae: a review. Biotechnol Adv 45:107650

    CAS  PubMed  Google Scholar 

  • Padyana AK, Bhat VB, Madyastha K, Rajashankar K, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282(4):893–898

    CAS  PubMed  Google Scholar 

  • Pagels F, Pereira RN, Vicente AA, Guedes AC (2021) Extraction of pigments from microalgae and cyanobacteria—a review on current methodologies. Appl Sci 11(11):5187

    CAS  Google Scholar 

  • Pan-utai W, Iamtham S (2019a) Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem 82:189–198

    CAS  Google Scholar 

  • Pan-utai W, Iamtham S (2019b) Physical extraction and extrusion entrapment of C-phycocyanin from Arthrospira platensis. J King Saud Univ-Sci 31(4):1535–1542

    Google Scholar 

  • Pan-utai W, Boonpok S, Pornpukdeewattana S (2021) Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatal Agric Biotechnol 33:101979

    CAS  Google Scholar 

  • Phong WN, Show PL, Chow YH, Ling TC (2018) Recovery of biotechnological products using aqueous two phase systems. J Biosci Bioeng 126(3):273–281

    CAS  PubMed  Google Scholar 

  • Pinheiro N, Assunção P, Rodríguez A, Sanromán MÁ, Deive FJ (2019) Surfactant-assisted disruption and extraction for carotenoid production from a novel Dunaliella strain. Sep Purif Technol 223:243–249

    CAS  Google Scholar 

  • Pisal DS, Lele S (2005) Carotenoid production from microalga, Dunaliella salina

  • Poojary MM, Barba FJ, Aliakbarian B, Donsì F, Pataro G, Dias DA, Juliano P (2016) Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar Drugs 14(11):214

    PubMed  PubMed Central  Google Scholar 

  • Porav AS, Bocăneală M, Fălămaş A, Bogdan DF, Barbu-Tudoran L, Hegeduş A, Dragoş N (2020) Sequential aqueous two-phase system for simultaneous purification of cyanobacterial phycobiliproteins. Biores Technol 315:123794

    CAS  Google Scholar 

  • Prado JM, Veggi PC, Meireles MAA (2017) Scale-up issues and cost of manufacturing bioactive compounds by supercritical fluid extraction and ultrasound assisted extraction. Global food security and wellness. Springer, New York, pp 377–433

    Google Scholar 

  • Praveenkumar R, Lee K, Lee J, Oh Y-K (2015) Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chem 17(2):1226–1234

    CAS  Google Scholar 

  • Pronyk C, Mazza G (2009) Design and scale-up of pressurized fluid extractors for food and bioproducts. J Food Eng 95(2):215–226

    CAS  Google Scholar 

  • Quintero Quiroz J, Naranjo Duran AM, Silva Garcia M, Ciro Gomez GL, Rojas Camargo JJ (2019). Ultrasound-assisted extraction of bioactive compounds from annatto seeds, evaluation of their antimicrobial and antioxidant activity, and identification of main compounds by LC/ESI-MS analysis. Int J Food Sci 2019

  • Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74(3):517–523

    CAS  PubMed  Google Scholar 

  • Reyes FA, Sielfeld CS, del Valle JM (2016) Effect of high-pressure compaction on supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis. J Food Eng 189:123–134

    CAS  Google Scholar 

  • Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of β-carotene production. Food Bioprocess Technol 4(5):693–701

    CAS  Google Scholar 

  • Rocha CM, Genisheva Z, Ferreira-Santos P, Rodrigues R, Vicente AA, Teixeira JA, Pereira RN (2018) Electric field-based technologies for valorization of bioresources. Bioresour Technol 254:325–339

    CAS  PubMed  Google Scholar 

  • Rodrigues RDP, de Castro FC, de Santiago-Aguiar RS, Rocha MVP (2018) Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res 31:454–462

    Google Scholar 

  • Rodrigues RDP, e Silva AS, Carlos TAV, Bastos AKP, de Santiago-Aguiar RS, Rocha MVP (2020) Application of protic ionic liquids in the microwave-assisted extraction of phycobiliproteins from Arthrospira platensis with antioxidant activity. Sep Purif Technol 252:117448

    CAS  Google Scholar 

  • Rój E, Dobrzyńska‐Inger A, Dębczak A, Kostrzewa D, Stępnik K (2015) Algae extract production methods and process optimization. In: Marine algae extracts: processes, products, and applications, pp 101–120

  • Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4(3):207–216

    CAS  PubMed  Google Scholar 

  • Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T (2020) Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol 1(1):2–11

    Google Scholar 

  • Ruiz CAS, Baca SZ, van den Broek LA, van den Berg C, Wijffels RH, Eppink MH (2020) Selective fractionation of free glucose and starch from microalgae using aqueous two-phase systems. Algal Res 46:101801

    Google Scholar 

  • Ruiz-Domínguez MC, Jáuregui M, Medina E, Jaime C, Cerezal P (2019) Rapid green extractions of C-phycocyanin from Arthrospira maxima for functional applications. Appl Sci 9(10):1987

    Google Scholar 

  • Şahin S, Nasir NTBM, Erken İ, Çakmak ZE, Çakmak T (2019) Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Mater Res Exp 6(9):095404

    Google Scholar 

  • Saini RK, Keum Y-S (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103

    CAS  PubMed  Google Scholar 

  • Sala L, Moraes CC, Kalil SJ (2018) Cell pretreatment with ethylenediaminetetraacetic acid for selective extraction of C-phycocyanin with food grade purity. Biotechnol Prog 34(5):1261–1268

    CAS  PubMed  Google Scholar 

  • Samorì C, Pezzolesi L, Galletti P, Semeraro M, Tagliavini E (2019) Extraction and milking of astaxanthin from Haematococcus pluvialis cultures. Green Chem 21(13):3621–3628

    Google Scholar 

  • Show K-Y, Lee D-J, Tay J-H, Lee T-M, Chang J-S (2015) Microalgal drying and cell disruption–recent advances. Biores Technol 184:258–266

    CAS  Google Scholar 

  • Silva SC, Ferreira IC, Dias MM, Barreiro MF (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules 25(15):3406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2):172–215

    PubMed  Google Scholar 

  • Soares AT, Marques Júnior JG, Lopes RG, Derner RB, Antoniosi Filho NR (2016) Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. J Braz Chem Soc 27(6):1083–1093

    CAS  Google Scholar 

  • Solovchenko A, Yahia EM, Chen C (2019) Pigments. Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Amsterdam, pp 225–252

    Google Scholar 

  • Soto-Sierra L, Stoykova P, Nikolov ZL (2018) Extraction and fractionation of microalgae-based protein products. Algal Res 36:175–192

    Google Scholar 

  • Tavanandi HA, Vanjari P, Raghavarao K (2019) Synergistic method for extraction of high purity Allophycocyanin from dry biomass of Arthrospira platensis and utilization of spent biomass for recovery of carotenoids. Sep Purif Technol 225:97–111

    CAS  Google Scholar 

  • Thaisamak P, Jaturonglumlert S, Varith J, Taip FS, Nitatwichit C (2019) Kinetic model of ultrasonic-assisted extraction with controlled temperature of C-phycocyanin from S. platensis. Int J Geomate 16(55):176–183

    Google Scholar 

  • Tirado DF, Calvo L (2019) The Hansen theory to choose the best co-solvent for supercritical CO2 extraction of β-carotene from Dunaliella salina. J Supercrit Fluids 145:211–218

    CAS  Google Scholar 

  • Torres-Acosta MA, Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M (2019) Aqueous two-phase systems at large scale: challenges and opportunities. Biotechnol J 14(1):1800117

    Google Scholar 

  • Vali Aftari R, Rezaei K, Mortazavi A, Bandani AR (2015) The optimized concentration and purity of Spirulina platensis C-phycocyanin: a comparative study on microwave-assisted and ultrasound-assisted extraction methods. J Food Process Preserv 39(6):3080–3091

    CAS  Google Scholar 

  • Veggi PC, Martinez J, Meireles MAA (2012) Fundamentals of microwave extraction. Microwave-assisted extraction for bioactive compounds. Springer, Boston, pp 15–52

    Google Scholar 

  • Ventura S, Nobre B, Ertekin F, Hayes M, Garciá-Vaquero M, Vieira F, Koc M, Gouveia L, Aires-Barros M, Palavra A (2017) Extraction of value-added compounds from microalgae. Microalgae-based biofuels and bioproducts. Elsevier, Amsterdam, pp 461–483

    Google Scholar 

  • Vinatoru M, Mason T, Calinescu I (2017) Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal Chem 97:159–178

    CAS  Google Scholar 

  • Williams R, Gingrich J, Glazer A (1980) Cyanobacterial phycobilisomes. Particles from Synechocystis 6701 and two pigment mutants. J Cell Biol 85(3):558–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi Y, Kong F, Chi Z (2021) ROS induce β-carotene biosynthesis caused by changes of photosynthesis efficiency and energy metabolism in Dunaliella salina under stress conditions. Front Bioeng Biotechnol 8:1447

    Google Scholar 

  • Yang B, Jiang Y, Zhao M, Shi J, Wang L (2008) Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp. Polym Degrad Stab 93(1):268–272

    CAS  Google Scholar 

  • Yau YK, Ooi CW, Ng E-P, Lan JC-W, Ling TC, Show PL (2015) Current applications of different type of aqueous two-phase systems. Bioresources Bioprocess 2(1):1–13

    Google Scholar 

  • Yazdani M, Tavakoli O (2019). The effect of salt shock on growth and pigment accumulation of Dunaliella Salina

  • Zhou J, Wang M, Carrillo C, Zhu Z, Brncic M, Berrada H, Barba FJ (2021) Impact of pressurized liquid extraction and pH on protein yield, changes in molecular size distribution and antioxidant compounds recovery from spirulina. Foods 10(9):2153

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Tavakoli.

Ethics declarations

Conflict of interest

There are no potential financial or other interests that could be perceived to influence the outcomes of the research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkarat, R., Mohamadnia, S. & Tavakoli, O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. Braz. J. Chem. Eng. 40, 321–342 (2023). https://doi.org/10.1007/s43153-022-00256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-022-00256-0

Keywords

Navigation