Skip to main content
Log in

Extraction, purification and stability of C-phycocyanin from Arthrospira platensis

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

C-phycocyanin is a highly valuable phycobiliprotein from Arthrospira platensis. However, its extraction, purification and conservation currently limit its commercial use. We review here the most common techniques and less conventional methods. Simple incubation in phosphate buffer at neutral pH can give high yields (> 100 mg/g) and even high protein purity (> 0.7) if the parameters (buffer concentration, temperature, incubation time, Arthrospira platensis. state etc.) are chosen correctly. This method is preferable to incubation in distilled water or acid solutions. Some mechanical, physical or thermal treatments can improve the extraction yield and accelerate the release of C-phycocyanin. Ultrasound-assisted extraction has been widely studied and probes generally give higher extraction yields than baths (> 100 mg/g) in less than 30 min. This technique can be coupled with others, such as freeze–thaw methods, to improve protein release. Indeed, freeze–thaw cycles are an efficient destructuring technique that can be used alone or as a pretreatment. Bead mills or pulsed electric fields can also be used to extract C-phycocyanin, but there is room for improvement in the choice of operating parameters. For purification of the extracted pigments, salting out or aqueous two-phase extraction can be used to increase phycocyanin grade. More advanced purification methods, mostly based on chromatography, can provide addition improvement. C-phycocyanin stability is dependent principally on pH and temperature, and is higher between pH 5 and pH 7 and at temperatures below 40 °C, but the use of various preservatives or conditioning can increases its lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ullah K, Ahmad M, Sofia et al (2014) Algal biomass as a global source of transport fuels: overview and development perspectives. Prog Nat Sci Mater Int 24:329–339. https://doi.org/10.1016/j.pnsc.2014.06.008

    Article  CAS  Google Scholar 

  2. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  3. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    Article  CAS  Google Scholar 

  4. Farrar WV (1966) Tecuitlatl; a glimpse of Aztec food technology. Nature 211:341–342. https://doi.org/10.1038/211341a0

    Article  Google Scholar 

  5. Hoseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem 13:1231–1237. https://doi.org/10.2174/1389557511313080009

    Article  CAS  Google Scholar 

  6. Minkova KM, Tchernov AA, Tchorbadjieva MI et al (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102:55–59. https://doi.org/10.1016/S0168-1656(03)00004-X

    Article  CAS  PubMed  Google Scholar 

  7. Cisneros M, Rito-Palomares M (2004) A simplified strategy for the release and primary recovery of C-phycocyanin produced by Spirulina maxima. Chem Biochem Eng Q 18:385–390

    CAS  Google Scholar 

  8. Chamorro-Cevallos G (2016) Methods for extraction, isolation and purification of C-phycocyanin: 50 years of research in review. Int J Food Nutr Sci 3:1–10. https://doi.org/10.15436/2377-0619.16.946

    Article  Google Scholar 

  9. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14. https://doi.org/10.1007/s00253-008-1542-y

    Article  CAS  PubMed  Google Scholar 

  10. Khan M, Varadharaj S, Shobha JC et al (2006) C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. J Cardiovasc Pharmacol 47:9–20. https://doi.org/10.1097/01.fjc.0000191520.48404.27

    Article  CAS  PubMed  Google Scholar 

  11. González R, Rodríguez S, Romay C et al (1999) Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol Res 39:55–59. https://doi.org/10.1006/phrs.1998.0409

    Article  PubMed  Google Scholar 

  12. Romay C, Ledón N, González R (1998) Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res 47:334–338. https://doi.org/10.1007/s000110050338

    Article  CAS  PubMed  Google Scholar 

  13. Nagaraj S, Arulmurugan P, Rajaram MG et al (2012) Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl4-induced hepatic damage rats. Biomed Prev Nutr 2:81–85. https://doi.org/10.1016/j.bionut.2011.12.001

    Article  Google Scholar 

  14. Xia D, Liu B, Xin W et al (2016) Protective effects of C-phycocyanin on alcohol-induced subacute liver injury in mice. J Appl Phycol 28:765–772. https://doi.org/10.1007/s10811-015-0677-3

    Article  CAS  Google Scholar 

  15. Ou Y, Lin L, Yang X et al (2013) Antidiabetic potential of phycocyanin: effects on KKAy mice. Pharm Biol 51:539–544. https://doi.org/10.3109/13880209.2012.747545

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Xu L, Cheng N et al (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J Appl Phycol 12:125–130. https://doi.org/10.1023/A:1008132210772

    Article  CAS  Google Scholar 

  17. McCarty MF (2007) ‘“Iatrogenic Gilbert syndrome”’—a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 69:974–994. https://doi.org/10.1016/j.mehy.2006.12.069

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes e Silva E, da Silva Figueira F, Lettnin AP et al (2018) C-phycocyanin: cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol Rep 70:75–80. https://doi.org/10.1016/j.pharep.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  19. Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J (2014) Nutraceutical properties of phycocyanin. J Funct Foods 11:375–392. https://doi.org/10.1016/j.jff.2014.10.011

    Article  CAS  Google Scholar 

  20. Kannaujiya VK, Sinha RP (2016) Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J Appl Phycol 28:1063–1070. https://doi.org/10.1007/s10811-015-0638-x

    Article  CAS  Google Scholar 

  21. Kissoudi M, Sarakatsianos I, Samanidou V (2018) Isolation and purification of food-grade C-phycocyanin from Arthrospira platensis and its determination in confectionery by HPLC with diode array detection. J Sep Sci 41:975–981. https://doi.org/10.1002/jssc.201701151

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Huang Y, Zhang R et al (2016) Medical application of Spirulina platensis derived C-phycocyanin. Evid Based Complement Alternat Med 2016:1–14. https://doi.org/10.1155/2016/7803846

    Article  Google Scholar 

  23. Singh P, Kuddus M, Thomas G (2010) An efficient method for extraction of C-phycocyanin from Spirulina sp. and its binding affinity to blood cells, nuclei and genomic DNA. Int Res J Biotechnol 1:80–85

    Google Scholar 

  24. Sobiechowska-Sasim M, Stoń-Egiert J, Kosakowska A (2014) Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J Appl Phycol 26:2065–2074. https://doi.org/10.1007/s10811-014-0244-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Safi C, Ursu AV, Laroche C et al (2014) Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res 3:61–65. https://doi.org/10.1016/j.algal.2013.12.004

    Article  Google Scholar 

  26. Auer GK, Weibel DB (2017) Bacterial cell mechanics. Biochemistry 56:3710–3724. https://doi.org/10.1021/acs.biochem.7b00346

    Article  CAS  PubMed  Google Scholar 

  27. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435. https://doi.org/10.1083/jcb.58.2.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch Microbiol 120:155–159. https://doi.org/10.1007/BF00409102

    Article  CAS  Google Scholar 

  29. Lauceri R, Bresciani M, Lami A, Morabito G (2017) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol. https://doi.org/10.4081/jlimnol.2017.1691

    Article  Google Scholar 

  30. Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr Methods 13:e10015. https://doi.org/10.1002/lom3.10015

    Article  Google Scholar 

  31. Wachda HH, Harjanto GD et al (2019) Production of antioxidant C-phycocyanin using extraction process of Spirulina platensis in large scale industry. IOP Conf Ser Mater Sci Eng 633:012025. https://doi.org/10.1088/1757-899X/633/1/012025

    Article  CAS  Google Scholar 

  32. Niu J-F, Wang G-C, Lin X, Zhou B-C (2007) Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J Chromatogr B 850:267–276. https://doi.org/10.1016/j.jchromb.2006.11.043

    Article  CAS  Google Scholar 

  33. Purohit A, Kumar V, Chownk M, Yadav SK (2019) Processing-independent extracellular production of high purity C-phycocyanin from Spirulina platensis. ACS Biomater Sci Eng 5:3237–3245. https://doi.org/10.1021/acsbiomaterials.9b00370

    Article  CAS  PubMed  Google Scholar 

  34. Doke JM (2005) An improved and efficient method for the extraction of phycocyanin from Spirulina sp. Int J Food Eng. https://doi.org/10.2202/1556-3758.1037

    Article  Google Scholar 

  35. Silveira ST, Burkert JFM, Costa JAV et al (2007) Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour Technol 98:1629–1634. https://doi.org/10.1016/j.biortech.2006.05.050

    Article  CAS  PubMed  Google Scholar 

  36. Sala L, da Costa Ores J, Moraes CC, Kalil SJ (2018) Simultaneous production of phycobiliproteins and carbonic anhydrase by Spirulina platensis LEB-52. Can J Chem Eng 96:1896–1902. https://doi.org/10.1002/cjce.23131

    Article  CAS  Google Scholar 

  37. Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493. https://doi.org/10.1016/j.biortech.2005.09.030

    Article  CAS  PubMed  Google Scholar 

  38. Moraes CC, Sala L, Cerveira GP, Kalil SJ (2011) C-phycocyanin extraction from Spirulina platensis wet biomass. Braz J Chem Eng 28:45–49. https://doi.org/10.1590/S0104-66322011000100006

    Article  CAS  Google Scholar 

  39. Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801. https://doi.org/10.1016/S0032-9592(98)00153-8

    Article  CAS  Google Scholar 

  40. Pan-utai W, Kahapana W, Iamtham S (2018) Extraction of C-phycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid. J Appl Phycol 30:231–242. https://doi.org/10.1007/s10811-017-1155-x

    Article  CAS  Google Scholar 

  41. Liao X, Zhang B, Wang X et al (2011) Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia 73:291–296. https://doi.org/10.1007/s10337-010-1874-5

    Article  CAS  Google Scholar 

  42. Chaiklahan R, Chirasuwan N, Loha V et al (2011) Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresour Technol 102:7159–7164. https://doi.org/10.1016/j.biortech.2011.04.067

    Article  CAS  PubMed  Google Scholar 

  43. Chaiklahan R, Chirasuwan N, Bunnag B et al (2018) Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol Rep Amst Neth 20:e00280

    Google Scholar 

  44. Tavanandi HA, Raghavarao KSMS (2020) Ultrasound-assisted enzymatic extraction of natural food colorant C-Phycocyanin from dry biomass of Arthrospira platensis. LWT 118:108802. https://doi.org/10.1016/j.lwt.2019.108802

    Article  CAS  Google Scholar 

  45. Shehadul Islam M, Aryasomayajula A, Selvaganapathy P (2017) A Review on macroscale and microscale cell lysis methods. Micromachines 8:83. https://doi.org/10.3390/mi8030083

    Article  PubMed Central  Google Scholar 

  46. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta BBA Biomembr 1666:105–117. https://doi.org/10.1016/j.bbamem.2004.04.011

    Article  CAS  Google Scholar 

  47. Primo ED, Otero LH, Ruiz F et al (2018) The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook: effect of lysozyme on the bacterial cell wall. Biochem Mol Biol Educ 46:83–90. https://doi.org/10.1002/bmb.21092

    Article  CAS  PubMed  Google Scholar 

  48. Sala L, Moraes CC, Kalil SJ (2018) Cell pretreatment with ethylenediaminetetraacetic acid for selective extraction of C-phycocyanin with food grade purity. Biotechnol Prog 34:1261–1268. https://doi.org/10.1002/btpr.2713

    Article  CAS  PubMed  Google Scholar 

  49. Sharma R, Bhunia B, Mondal A et al (2020) Statistical optimization of process parameters for improvement of phycobiliproteins (PBPs) yield using ultrasound-assisted extraction and its kinetic study. Ultrason Sonochem 60:104762. https://doi.org/10.1016/j.ultsonch.2019.104762

    Article  CAS  PubMed  Google Scholar 

  50. da Costa Ores J, de Amarante MCA, Kalil SJ (2016) Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresour Technol 219:219–227. https://doi.org/10.1016/j.biortech.2016.07.133

    Article  CAS  Google Scholar 

  51. Prabuthas P, Majumdar S, Srivastav PP, Mishra HN (2009) Standardization of rapid and economical method for neutraceutical extraction from algae. In : Proceedings of the National Conference on Engineering for Food and Bio-Processing, Pantnagar, India pp 148–151 https://doi.org/10.13140/2.1.2627.0082

  52. Chen K-H, Wang SS-S, Show P-L et al (2019) Rapid and efficient recovery of C-phycocyanin from highly turbid Spirulina platensis algae using stirred fluidized bed ion exchange chromatography. Sep Purif Technol 209:636–645. https://doi.org/10.1016/j.seppur.2018.08.057

    Article  CAS  Google Scholar 

  53. Bachchhav MB, Kulkarni MV, Ingale AG (2020) Process-intensified extraction of phycocyanin followed by β-carotene from Spirulina platensis using ultrasound-assisted extraction. Sep Sci Technol 55:932–944. https://doi.org/10.1080/01496395.2019.1580293

    Article  CAS  Google Scholar 

  54. Tavanandi HA, Chandralekha Devi A, Ksms R (2018) A newer approach for the primary extraction of allophycocyanin with high purity and yield from dry biomass of Arthrospira platensis. Sep Purif Technol 204:162–174. https://doi.org/10.1016/j.seppur.2018.04.057

    Article  CAS  Google Scholar 

  55. Pan-utai W, Iamtham S (2019) Physical extraction and extrusion entrapment of C-phycocyanin from Arthrospira platensis. J King Saud Univ Sci 31:1535–1542. https://doi.org/10.1016/j.jksus.2018.05.026

    Article  Google Scholar 

  56. Pan-utai W, Iamtham S (2019) Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem 82:189–198. https://doi.org/10.1016/j.procbio.2019.04.014

    Article  CAS  Google Scholar 

  57. Furuki T, Maeda S, Imajo S et al (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J Appl Phycol 15:319–324

    Article  CAS  Google Scholar 

  58. Stramarkou M, Papadaki S, Kyriakopoulou K, Krokida M (2016) Recovery of functional pigments from four different species of microalgae. IOSR J Environ Sci Toxicol Food Technol 10:26–30. https://doi.org/10.9790/2402-1009022630

    Article  CAS  Google Scholar 

  59. Hadiyanto, Suttrisnorhadi, Sutanto H et al (2015) The effects of temperature and frequencies in ultrasound assisted extraction of phycocyanin from microalgae Spirulina sp. In: International conference of chemical and material engineering (ICCME) 2015: green technology for sustainable chemical products and processes, Semarang, Indonesia, p 030009

  60. Dianursanti, Indraputri CM, Taurina Z (2018) Optimization of phycocyanin extraction from microalgae Spirulina platensis by sonication as antioxidant. In: Proceedings of the international symposium of biomedical engineering (ISBE) 2017, Bali, Indonesia, p 030013

  61. Minchev I, Petkova N, Milkova-Tomova I (2020) Ultrasound-assisted extraction of chlorophylls and phycocyanin from Spirulina platensis. Biointerface Res Appl Chem 11:9296–9304. https://doi.org/10.33263/BRIAC112.92969304

    Article  Google Scholar 

  62. Tavanandi HA, Mittal R, Chandrasekhar J, Raghavarao KSMS (2018) Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Res 31:239–251. https://doi.org/10.1016/j.algal.2018.02.008

    Article  Google Scholar 

  63. Manirafasha E, Murwanashyaka T, Ndikubwimana T et al (2017) Ammonium chloride: a novel effective and inexpensive salt solution for phycocyanin extraction from Arthrospira (Spirulina) platensis. J Appl Phycol 29:1261–1270. https://doi.org/10.1007/s10811-016-0989-y

    Article  CAS  Google Scholar 

  64. Yu J (2017) Application of an ultrafine shearing method for the extraction of C-phycocyanin from Spirulina platensis. Molecules 22:2023. https://doi.org/10.3390/molecules22112023

    Article  CAS  PubMed Central  Google Scholar 

  65. Jaeschke DP, Mercali GD, Marczak LDF et al (2019) Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresour Technol 283:207–212. https://doi.org/10.1016/j.biortech.2019.03.035

    Article  CAS  PubMed  Google Scholar 

  66. Moraes CC, De Medeiros Burkert JF, Kalil SJ (2010) C-phycocyanin extraction process for large scale use: C-phycocyanin extraction process. J Food Biochem 34:133–148. https://doi.org/10.1111/j.1745-4514.2009.00317.x

    Article  Google Scholar 

  67. Raso J, Frey W, Ferrari G et al (2016) Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov Food Sci Emerg Technol 37:312–321. https://doi.org/10.1016/j.ifset.2016.08.003

    Article  Google Scholar 

  68. Martínez JM, Luengo E, Saldaña G et al (2017) C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res Int 99:1042–1047. https://doi.org/10.1016/j.foodres.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  69. Viana Carlos TA, dos Santos Pires Cavalcante KM, de Cássia Evangelista de Oliveira F et al (2021) Pressurized extraction of phycobiliproteins from Arthrospira platensis and evaluation of its effect on antioxidant and anticancer activities of these biomolecules. J Appl Phycol 33:929–938. https://doi.org/10.1007/s10811-020-02358-z

    Article  CAS  Google Scholar 

  70. Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1:325–331. https://doi.org/10.1007/BF00003469

    Article  Google Scholar 

  71. Rito-Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima: aqueous two-phase process for recovery of c-phycocyanin. J Chem Technol Biotechnol 76:1273–1280. https://doi.org/10.1002/jctb.507

    Article  CAS  Google Scholar 

  72. Chen K-H, Wang SS-S, Show P-L et al (2018) A rapid and efficient technique for direct extraction of C-phycocyanin from highly turbid Spirulina platensis algae using hydrophobic interaction chromatography in stirred fluidized bed. Biochem Eng J 140:47–56. https://doi.org/10.1016/j.bej.2018.09.005

    Article  CAS  Google Scholar 

  73. Zhang Y-M, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13:601–603. https://doi.org/10.1023/A:1008914405302

    Article  CAS  Google Scholar 

  74. Marzorati S, Schievano A, Idà A, Verotta L (2020) Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO2 and water extraction methods for added value products cascade. Green Chem 22:187–196. https://doi.org/10.1039/C9GC03292D

    Article  CAS  Google Scholar 

  75. Wang WJ, Zhang XL, Xu CB, Cheng HY (2011) Purification and concentration of C-phycocyanin from Spirulina platensis using aqueous two-phase system. Appl Mech Mater 138–139:995–1001. https://doi.org/10.4028/www.scientific.net/AMM.138-139.995

    Article  CAS  Google Scholar 

  76. Böcker L, Hostettler T, Diener M et al (2020) Time-temperature-resolved functional and structural changes of phycocyanin extracted from Arthrospira platensis/Spirulina. Food Chem 316:126374. https://doi.org/10.1016/j.foodchem.2020.126374

    Article  CAS  PubMed  Google Scholar 

  77. Patil G, Raghavarao KSMS (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34:156–164. https://doi.org/10.1016/j.bej.2006.11.026

    Article  CAS  Google Scholar 

  78. Antelo FS, Anschau A, Costa JAV, Kalil SJ (2010) Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. J Braz Chem Soc 21:921–926. https://doi.org/10.1590/S0103-50532010000500022

    Article  CAS  Google Scholar 

  79. Chew KW, Chia SR, Krishnamoorthy R et al (2019) Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour Technol 288:121519. https://doi.org/10.1016/j.biortech.2019.121519

    Article  CAS  PubMed  Google Scholar 

  80. Zhang X, Zhang F, Luo G et al (2014) Extraction and separation of phycocyanin from Spirulina using aqueous two-phase systems of ionic liquid and salt. J Food Nutr Res 3:15–19. https://doi.org/10.12691/jfnr-3-1-3

    Article  CAS  Google Scholar 

  81. Zhao L, Peng Y, Gao J, Cai W (2014) Bioprocess intensification: an aqueous two-phase process for the purification of C-phycocyanin from dry Spirulina platensis. Eur Food Res Technol 238:451–457. https://doi.org/10.1007/s00217-013-2124-5

    Article  CAS  Google Scholar 

  82. Wang F, Liu Y-H, Ma Y et al (2017) Application of TMA-PEG to promote C-phycocyanin extraction from S. platensis in the PEG ATPS. Process Biochem 52:283–294. https://doi.org/10.1016/j.procbio.2016.11.006

    Article  CAS  Google Scholar 

  83. de Amarante MCA, Corrêa Júnior LCS, Sala L, Kalil SJ (2019) Analytical grade C-phycocyanin obtained by a single-step purification process. Process Biochem. https://doi.org/10.1016/j.procbio.2019.11.020

    Article  Google Scholar 

  84. Silveira ST, de Menezes Quines LK, Burkert CAV, Kalil SJ (2008) Separation of phycocyanin from Spirulina platensis using ion exchange chromatography. Bioprocess Biosyst Eng 31:477–482. https://doi.org/10.1007/s00449-007-0185-1

    Article  CAS  PubMed  Google Scholar 

  85. Kumar D, Dhar DW, Pabbi S et al (2014) Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J Plant Physiol 19:184–188

    Article  Google Scholar 

  86. Telegina TA, Biryukov MV, Terekhova IV et al (2018) Isolation and characterization of water-soluble chromoproteins from Arthrospira platensis cyanobacteria: C-Phycocyanin, allophycocyanin, and carotenoid- and chlorophyll-binding proteins. Appl Biochem Microbiol 54:631–638. https://doi.org/10.1134/S0003683818060145

    Article  CAS  Google Scholar 

  87. Patil G, Chethana S, Sridevi AS, Raghavarao KSMS (2006) Method to obtain C-phycocyanin of high purity. J Chromatogr A 1127:76–81. https://doi.org/10.1016/j.chroma.2006.05.073

    Article  CAS  PubMed  Google Scholar 

  88. Binder A, Wilson K, Zuber H (1972) C-phycocyanin from the thermophilic blue-green alga Mastigocladus laminosus, isolation, characterization and subunit composition. FEBS Lett 20:111–116. https://doi.org/10.1016/0014-5793(72)80030-9

    Article  CAS  PubMed  Google Scholar 

  89. Baskin EM, Bukshpan S, Zilberstein GV (2006) pH-induced intracellular protein transport. Phys Biol 3:101–106. https://doi.org/10.1088/1478-3975/3/2/002

    Article  CAS  PubMed  Google Scholar 

  90. Abalde J, Betancourt L, Torres E et al (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136:109–120. https://doi.org/10.1016/S0168-9452(98)00113-7

    Article  CAS  Google Scholar 

  91. Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramı́rez R et al (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39:2047–2052. https://doi.org/10.1016/j.procbio.2003.10.007

    Article  CAS  Google Scholar 

  92. Sala L, Figueira FS, Cerveira GP et al (2014) Kinetics and adsorption isotherm of C-phycocyanin from Spirulina platensis on ion-exchange resins. Braz J Chem Eng 31:1013–1022. https://doi.org/10.1590/0104-6632.20140314s00002443

    Article  Google Scholar 

  93. Jiang L, Wang Y, Yin Q et al (2017) Phycocyanin: a potential drug for cancer treatment. J Cancer 8:3416–3429. https://doi.org/10.7150/jca.21058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kao O, Berns DS, Maccoll R (1971) C-Phycocyanin monomer molecular weight. Eur J Biochem 19:595–599. https://doi.org/10.1111/j.1432-1033.1971.tb01353.x

    Article  CAS  PubMed  Google Scholar 

  95. Mogany T, Kumari S, Swalaha FM, Bux F (2019) Extraction and characterisation of analytical grade C-phycocyanin from Euhalothece sp. J Appl Phycol 31:1661–1674. https://doi.org/10.1007/s10811-018-1661-5

    Article  CAS  Google Scholar 

  96. Antelo FS, Costa JAV, Kalil SJ (2008) Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochem Eng J 41:43–47. https://doi.org/10.1016/j.bej.2008.03.012

    Article  CAS  Google Scholar 

  97. Chaiklahan R, Chirasuwan N, Bunnag B (2012) Stability of phycocyanin extracted from Spirulina sp.: influence of temperature, pH and preservatives. Process Biochem 47:659–664. https://doi.org/10.1016/j.procbio.2012.01.010

    Article  CAS  Google Scholar 

  98. Duangsi R, Phoopat N, Ningsanond S (2009) Phycocyanin extraction from Spirulina platensis and extract stability under various pH and temperature. As J Food Ag-Ind 2:819–826

    Google Scholar 

  99. Hadiyanto CM, Sutanto H et al (2018) Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Biosci 22:85–90. https://doi.org/10.1016/j.fbio.2018.01.007

    Article  CAS  Google Scholar 

  100. Li Y, Zhang Z, Paciulli M, Abbaspourrad A (2020) Extraction of phycocyanin—a natural blue colorant from dried spirulina biomass: influence of processing parameters and extraction techniques. J Food Sci 1750–3841:14842. https://doi.org/10.1111/1750-3841.14842

    Article  CAS  Google Scholar 

  101. Silva LA, Kuhn KR, Moraes CC et al (2009) Experimental design as a tool for optimization of C-phycocyanin purification by precipitation from Spirulina platensis. J Braz Chem Soc 20:5–12. https://doi.org/10.1590/S0103-50532009000100003

    Article  CAS  Google Scholar 

  102. Padyana AK, Bhat VB, Madyastha KM et al (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898. https://doi.org/10.1006/bbrc.2001.4663

    Article  CAS  PubMed  Google Scholar 

  103. Minic SL, Milcic M, Stanic-Vucinic D et al (2015) Phycocyanobilin, a bioactive tetrapyrrolic compound of blue-green alga Spirulina, binds with high affinity and competes with bilirubin for binding on human serum albumin. RSC Adv 5:61787–61798. https://doi.org/10.1039/C5RA05534B

    Article  CAS  Google Scholar 

  104. Jespersen L, Strømdahl LD, Olsen K, Skibsted LH (2005) Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur Food Res Technol 220:261–266. https://doi.org/10.1007/s00217-004-1062-7

    Article  CAS  Google Scholar 

  105. Choi WY, Lee HY (2018) Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Appl Sci 8:1662. https://doi.org/10.3390/app8091662

    Article  CAS  Google Scholar 

  106. Selig MJ, Malchione NM, Gamaleldin S et al (2018) Protection of blue color in a spirulina derived phycocyanin extract from proteolytic and thermal degradation via complexation with beet-pectin. Food Hydrocoll 74:46–52. https://doi.org/10.1016/j.foodhyd.2017.07.027

    Article  CAS  Google Scholar 

  107. Martelli G, Folli C, Visai L et al (2014) Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochem 49:154–159. https://doi.org/10.1016/j.procbio.2013.10.008

    Article  CAS  Google Scholar 

  108. Wu H-L, Wang G-H, Xiang W-Z et al (2016) Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. Int J Food Prop 19:2349–2362. https://doi.org/10.1080/10942912.2015.1038564

    Article  CAS  Google Scholar 

  109. Mishra SK, Shrivastav A, Mishra S (2008) Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochem 43:339–345. https://doi.org/10.1016/j.procbio.2007.12.012

    Article  CAS  Google Scholar 

  110. Bermejo R, Talavera EM, delValle C, Alvarez-Pez JM (2000) C-phycocyanin incorporated into reverse micelles: a fluorescence study. Colloids Surf B Biointerfaces 18:51–59. https://doi.org/10.1016/S0927-7765(99)00129-0

    Article  CAS  Google Scholar 

  111. Falkeborg MF, Roda-Serrat MC, Burnæs KL, Nielsen ALD (2018) Stabilising phycocyanin by anionic micelles. Food Chem 239:771–780. https://doi.org/10.1016/j.foodchem.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  112. Yan M, Liu B, Jiao X, Qin S (2014) Preparation of phycocyanin microcapsules and its properties. Food Bioprod Process 92:89–97. https://doi.org/10.1016/j.fbp.2013.07.008

    Article  CAS  Google Scholar 

  113. Gustiningtyas A, Setyaningsih I, Hardiningtyas SD, Susila AAR (2020) Improvement stability of phycocyanin from Spirulina platensis encapsulated by water soluble chitosan nanoparticles. IOP Conf Ser Earth Environ Sci 414:012005. https://doi.org/10.1088/1755-1315/414/1/012005

    Article  Google Scholar 

  114. Braga ARC, da Silva Figueira F, da Silveira JT et al (2016) Improvement of thermal stability of C-phycocyanin by nanofiber and preservative agents: C-phycocyanin stability : preservative and nanofiber. J Food Process Preserv 40:1264–1269. https://doi.org/10.1111/jfpp.12711

    Article  CAS  Google Scholar 

  115. Papadaki S, Kyriakopoulou K, Tzovenis I, Krokida M (2017) Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol 44:217–223. https://doi.org/10.1016/j.ifset.2017.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the FEDER Greenalg ESR_R&S_DI-000173 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Fabre.

Ethics declarations

Disclosure of potential conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Compliance with ethics requirements

The research did not involve human participants or animals

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabre, JF., Niangoran, N.U.F., Gaignard, C. et al. Extraction, purification and stability of C-phycocyanin from Arthrospira platensis. Eur Food Res Technol 248, 1583–1599 (2022). https://doi.org/10.1007/s00217-022-03987-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-03987-z

Keywords

Navigation