Skip to main content

Advertisement

Log in

Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Marine organisms are excellent sources of long-chain omega-3 polyunsaturated fatty acids (PUFAs), increasingly demanded for their healthy properties. Seaweeds present a low lipid content, but their high PUFA fraction and the low ω-6:ω-3 ratio convert them in an alternative to other sources. In particular, the use of concentrated lipidic extracts offers a practical approach without significantly changing dietary habits. In order to produce seaweed concentrated extracts, the extraction technology is highly influencing and higher efficiency, low solvent, time, and energy consumption are demanded. Depending on the solvent and operational conditions, other seaweed lipophilic components could be also extracted, providing a final product with a range of interesting biological properties. A survey of intensification extraction processes designed to obtain the lipophilic fractions from seaweeds is presented, emphasizing on the composition and properties of the products. Moreover, in order to define a sustainable process the remaining algal solids should be utilized as a source of other nutritional and bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid (18:3, ω-3)

ARA:

Arachidonic acid (20:4, ω-6)

ALA:

α‐Linolenic acid (18:3, ω-3)

ARA:

Arachidonic acid (20:4, ω-6)

DHA:

Docosahexaenoic acid (22:6, ω-3)

DPA:

Docosapentaenoic acid (22:5, ω − 3)

EFA:

Essential fatty acids

EPA:

Eicosapentaenoic acid (20:5, ω-3)

GLA:

Gamma-linolenic acid (18:3, ω-6)

LA:

Lauric acid (12:0)

LIN:

Linoleic acid (18:2, ω-6)

MA:

Myristic acid (14:0)

MUFAs:

Monounsaturated fatty acids

PA:

Palmitic acid (16:0)

PUFAs:

Polyunsaturated fatty acids

SA:

Stearic acid (18:0)

SDA:

Stearidonic acid (18:4, ω-3)

SFAs:

Saturated fatty acids

References

  • Abdelhamid, A. S., Brown, T. J., Brainard, J. S., Biswas, P., Thorpe, G. C., Moore, H. J., Deane, K. H. O., Alabdulghafoor, F. K., Summerbell, C. D., Worthington, H. V., Song, F., & Hooper, L. (2018). Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease (Review). Cochrane Database of Systematic Reviews, 18(7), Article CD003177.

  • Ahmadkelayeh, S., & Hawboldt, K. (2020). Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction. Trends in Food Science & Technology, 103, 94–108.

    Article  CAS  Google Scholar 

  • Albert, B. B., Cameron-Smith, D., Hofman, P. L., & Cutfield, W. S. (2013). Oxidation of marine omega-3 supplements and human health. BioMed Research International, 13, Article number 464921.

  • Alexander, D. D., Miller, P. E., Van Elswyk, M. E., Kuratko, C. N., & Bylsma, L. C. (2017). A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clinic Proceedings, 92(1), 15–29.

    Article  CAS  PubMed  Google Scholar 

  • Arab-Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S., & Linder, M. (2012). Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science & Technology, 25(1), 24–33.

    Article  CAS  Google Scholar 

  • Aubourg, S. P., Trigo, M., Martínez, B., & Rodríguez, A. (2020). Effect of prior chilling period and alga-extract packaging on the quality of a canned underutilised fish species. Foods, 9(9), 1333.

    Article  CAS  PubMed Central  Google Scholar 

  • Aung, T., Halsey, J., Kromhout, D., Gerstein, H. C., Marchioli, R., Tavazzi, L., Geleijnse, J. M., Rauch, B., Ness, A., Galan, P., Chew, E. Y., Bosch, J., Collins, R., Lewington, S., Armitage, J., & Clarke, R. (2018). Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77,917 individuals. JAMA Cardiology, 3(3), 225–234.

    Article  PubMed  Google Scholar 

  • Balboa, E. M., Millán, R., Domínguez, H., & Taboada, C. (2019). Sargassum muticum hydrothermal extract: Effects on serum parameters and antioxidant activity in rats. Applied Sciences, 9, 2570.

    Article  CAS  Google Scholar 

  • Balboa, E. M., Moure, A., & Domínguez, H. (2015). Valorization of Sargassum muticum biomass according to the biorefinery concept. Marine Drugs, 13(6), 3745–3760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belayev, L., Hong, S.-H., Menghani, H., Marcell, S. J., Obenaus, A., Freitas, R. S., Khoutorova, L., Balaszczuk, V., Jun, B., Oriá, R. B., & Bazan, N. G. (2018). Docosanoids promote neurogenesis and angiogenesis, blood-brain barrier integrity, penumbra protection, and neurobehavioral recovery after experimental ischemic stroke. Molecular Neurobiology, 55(8), 7090–7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkacemi, L., Belalia, M., Djendara, A., & Bouhadda, Y. (2020). Antioxidant and antibacterial activities and identification of bioactive compounds of various extracts of Caulerpa racemosa from Algerian coast. Asian Pacific Journal of Tropical Biomedicine, 10(2), 87–94.

    Article  CAS  Google Scholar 

  • Bendicho, C., & Lavilla, I. (2013). Extraction/ultrasound extraction. In J. Reedijk (Ed.), Module in chemistry, molecular sciences and chemical engineering. Amsterdam: Elsevier.

  • Billakanti, J. M., Catchpole, O. J., Fenton, T. A., Mitchell, K. A., & Mackenzie, A. D. (2013). Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process Biochemistry, 48(12), 1999–2008.

    Article  CAS  Google Scholar 

  • Brennan, B., & Regan, F. (2020). In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. Science of the Total Environment, 748, Article number 142464.

  • Casas, M. P., & Domínguez, H. (2017). Enzyme-assisted aqueous extraction processes. In H. Domínguez, M. J. González-Muñoz (Eds.), Water extraction of bioactive compounds. Kidlington, Oxford United Kingdom: Elsevier.

  • Casula, M., Olmastroni, E., Gazzotti, M., Galimberti, F., Zambon, A., & Catapano, A. L. (2020). Omega-3 polyunsaturated fatty acids supplementation and cardiovascular outcomes: Do formulation, dosage, and baseline cardiovascular risk matter? An updated meta-analysis of randomized controlled trials. Pharmacological Research, 160, Article 105060.

  • Catchpole, O., Moreno, T., Montañes, F., & Tallon, S. (2018). Perspectives on processing of high value lipids using supercritical fluids. Journal of Supercritical Fluids, 134, 260–268.

    Article  CAS  Google Scholar 

  • Chen, C.-Y., & Chou, H.-N. (2002). Screening of red algae filaments as a potential alternative source of eicosapentaenoic acid. Marine Biotechnology, 4(2), 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, P. C. K. (1999). Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chemistry, 65, 399–403.

    Article  CAS  Google Scholar 

  • Cheung, P. C. K., Leung, A. Y. H., & Ang, P. O., Jr. (1998). Comparison of supercritical carbon dioxide and Soxhlet extraction of lipids from a brown seaweed, Sargassum hemiphyllum (Turn.) C. Ag. Journal of Agricultural and Food Chemistry, 46(10), 4228–4232.

    Article  CAS  Google Scholar 

  • Cid, U., Rodríguez-Seoane, P., Díaz-Reinoso, B., & Domínguez, H. (2021). Extraction of fatty acids and phenolics from Mastocarpus stellatus using pressurized green solvents. Marine Drugs, 19(8), Article number 453.

  • Ciko, A.-M., Jokić, S., Šubarić, D., & Jerković, I. (2018). Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Marine Drugs, 16(10), Article number 348.

  • Conde, E., Moure, A., & Domínguez, H. (2015). Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. Journal of Applied Phycology, 27(2), 957–964.

    Article  CAS  Google Scholar 

  • Cortés Fuentes, I. A., Burotto, M., Retamal, M. A., Frelinghuysen, M., Caglevic, C., & Gormaz, J. G. (2020). Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radical Biology & Medicine, 160, 263–276.

    Article  CAS  Google Scholar 

  • Cortés, Y., Hormazábal, E., Leal, H., Urzúa, A., Mutis, A., Parra, L., & Quiroz, A. (2014). Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electronic Journal of Biotechnology, 17(3), 126–131.

    Article  Google Scholar 

  • Crampon, C., Boutin, O., & Badens, E. (2011). Supercritical carbon dioxide extraction of molecules of interest from microalgae and seaweeds. Industrial and Engineering Chemical Research, 50(13), 8941–8953.

    Article  CAS  Google Scholar 

  • Curtis, C. L., Hughes, C. E., Flannery, C. R., Little, C. B., Harwood, J. L., & Caterson, B. (2000). n-3 Fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. Journal of Biological Chemistry, 275(2), 721–724.

    Article  CAS  PubMed  Google Scholar 

  • Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891–899.

    Article  CAS  Google Scholar 

  • De Melo, M. M. R., Sapatinha, M., Pinheiro, J., Lemos, M. F. L., Bandarra, N. M., Batista, I., et al. (2020). Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. Journal of CO2 Utilization, 38, 24–31.

    Google Scholar 

  • Demler, O. V., Liu, Y., Luttmann-Gibson, H., Watrous, J. D., Lagerborg, K. A., Dashti, H., Giulianini, F., Heath, M., Camargo, C. A., Harris, W. S., Wohlgemuth, J. G., Andres, A. M., Tivari, S., Long, T., Najhawan, M., Dao, K., Prentice, J. G., Larsen, J. A., Okereke, O. I., Costenbader, K. H., Buring, J. E., Manson, J. E., Cheng, S., Jain, M., & Mora, S. (2020). One-year effects of omega-3 treatment on fatty acids, oxylipins, and related bioactive lipids and their associations with clinical lipid and inflammatory biomarkers: Findings from a substudy of the vitamin d and omega-3 trial (vital). Metabolites, 10(11), 431, 1–20.

  • El-Belghiti, K., & Vorobiev, E. (2005). Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment. Biosystems Engineering, 90(3), 289–294.

    Article  Google Scholar 

  • Emery, S., Häberling, I., Berger, G., Walitza, S., Schmeck, K., Albert, T., Baumgartner, N., Strumberger, M., Albermann, M., & Drechsler, R. (2020). Omega-3 and its domain-specific effects on cognitive test performance in youths: A meta-analysis. Neuroscience & Biobehavioral Reviews, 112, 420–436.

    Article  CAS  Google Scholar 

  • Encina, C., Vergara, C., Giménez, B., Oyarzún-Ampuero, F., & Robert, P. (2016). Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science and Technology, 56, 46–60.

    Article  CAS  Google Scholar 

  • Fincan, M., & Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 55(3), 223–230.

    Article  Google Scholar 

  • Foseid, L., Natvik, I., Devle, H., & Ekeberg, D. (2020). Identification of fatty acids in fractionated lipid extracts from Palmaria palmata, Alaria esculenta and Saccharina latissima by off-line SPE GC-MS. Journal of Applied Phycology, 32(6), 4251–4262.

    Article  CAS  Google Scholar 

  • Freile-Pelegrín, Y., Chávez-Quintal, C., Caamal-Fuentes, E., Vázquez-Delfín, E., Madera-Santana, T., & Robledo, D. (2020). Valorization of the filamentous seaweed Chaetomorpha gracilis (Cladophoraceae, Chlorophyta) from an IMTA system. Journal of Applied Phycology, 32(4), 2295–2306.

    Article  CAS  Google Scholar 

  • Galloway, A. W. E., Britton-Simmons, K. H., Duggins, D. O., Gabrielson, P. W., & Brett, M. T. (2012). Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. Journal of Phycology, 48(4), 956–965.

    Article  PubMed  Google Scholar 

  • Geranpour, M., Seid, E. A., & Jafari, M. (2020). Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science & Technology, 102, 71–90.

    Article  CAS  Google Scholar 

  • Gosch, B. J., Lawton, R. J., Paul, N. A., de Nys, R., & Magnusson, M. (2015a). Environmental effects on growth and fatty acids in three isolates of Derbesia tenuissima (Bryopsidales, Chlorophyta). Algal Research, 9, 82–93.

    Article  Google Scholar 

  • Gosch, B. J., Paul, N. A., de Nys, R., & Magnusson, M. (2014). Seasonal and within-plant variation in fatty acid content and composition in the brown seaweed Spatoglossum macrodontum (Dictyotales, Phaeophyceae). Journal of Applied Phycology, 27(1), 387–398.

    Article  CAS  Google Scholar 

  • Gosch, B. J., Paul, N. A., de Nys, R., & Magnusson, M. (2015b). Spatial, seasonal, and within-plant variation in total fatty acid content and composition in the brown seaweeds Dictyota bartayresii and Dictyopteris australis (Dictyotales, Phaeophyceae). Journal of Applied Phycology, 27(4), 1607–1622.

    Article  CAS  Google Scholar 

  • Huang, H.-L., & Wang, B.-G. (2004). Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. Journal of Agricultural and Food Chemistry, 52(16), 4993–4997.

    Article  CAS  PubMed  Google Scholar 

  • Jaswir, I., Noviendri, D., Salleh, H. M., & Miyashita, K. (2012). Fucoxanthin extractions of brown seaweeds and analysis of their lipid fraction in methanol. Food Science & Technology Research, 18(2), 251–257.

    Article  CAS  Google Scholar 

  • Jaswir I., Noviendri D., Taher M., Mohamed F., Salleh H. M., Octavianti F., Lestari W., Hendri R., Abdullah A., Miyashita K., Hasna A. (2017). Optimization of essential oil and fucoxanthin extraction from Sargassum binderi by supercritical carbon dioxide (SC-CO2) extraction with ethanol as co-solvent Using Response Surface Methodology (RSM). International Food Research Journal, 24, 514–521.

  • Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675.

    Article  CAS  PubMed  Google Scholar 

  • Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N. B., & Bedoux, G. (2015). Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs, 13(9), 5606–5628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerdiles, O., Layé, S., & Calon, F. (2017). Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends in Food Science & Technology, 69, 203–213.

    Article  CAS  Google Scholar 

  • Khan, M. N. A., Cho, J.-Y., Lee, M.-C., Kang, J.-Y., Nam, G. P., Fujii, H., & Hong, Y.-K. (2007). Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 55(17), 6984–6988.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. N. A., Lee, M.-C., Kang, J.-Y., Nam, G. P., Fujii, H., & Hong, Y.-K. (2008). Effects of the brown seaweed Undaria pinnatifida on erythematous inflammation assessed using digital photo analysis. Phytotherapy Research, 22(5), 634–639.

    Article  PubMed  Google Scholar 

  • Kord, A., Cherif, Y. F., Amiali, M., Mustapha, M. A., Benfares, R., Soumia, B., & Belfadel, O. (2019). Fatty acids composition of Cystoseira sauvageauana and Laurencia pinnatifida collected from the algerian coast. Acta Periodica Technologica, 50, 113–122.

    Article  CAS  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346.

    Article  Google Scholar 

  • Levkov, K., Linzon, Y., Mercadal, B., Ivorra, A., González, C. A., & Golberg, A. (2020). High-voltage pulsed electric field laboratory device with asymmetric voltage multiplier for marine macroalgae electroporation. Innovative Food Science and Emerging Technologies, 60, Article number 102288.

  • Li, X., Li, F., Jian, H., & Su, R. (2018). Exploration of antifouling potential of the brown algae Laminaria “Sanhai.” Journal of Ocean University of China, 17(5), 1135–1141.

    Article  CAS  Google Scholar 

  • Liu, J.-H., Wang, Q., You, Q.-L., Li, Z.-L., Hu, N.-Y., Wang, Y., Jin, Z.-L., Li, S.-J., Li, X.-W., Yang, J.-M., Zhu, X.-H., Dai, Y.-F., Xu, J.-P., Bai, X.-C., & Gao, T.-M. (2020). Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nature Communications, 11(1), Article number 5465.

  • Mæhre, H. K., Malde, M. K., Eilertsen, K.-E., & Elvevoll, E. O. (2014). Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food Agriculture, 94(15), 3281–3290.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1, 7–18.

    CAS  Google Scholar 

  • Manson, J. E., Cook, N. R., Lee, I.-M., Christen, W., Bassuk, S. S., Mora, S., Gibson, H., Albert, C. M., Gordon, D., Copeland, T., D’Agostino, D., Friedenberg, G., Ridge, C., Bubes, V., Giovannucci, E. L., Willett, W. C., & Buring, J. E. (2019). Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. The New England Journal of Medicine, 380(1), 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Marsol-Vall, A., Aitta, E., Guo, A., & Yang, B. (2021). Green technologies for production of oils rich in n-3 polyunsaturated fatty acids from aquatic sources. Critical Reviews in Food Science and Nutrition (in press).

  • Martins, A. P., Yokoya, N. S., & Colepicolo, P. (2012). Comparison of extraction and transesterification methods on the determination of the fatty acid contents of three Brazilian seaweed species. Revista Brasileira De Farmacognosia, 22(4), 854–860.

    Article  CAS  Google Scholar 

  • Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260.

    Article  CAS  Google Scholar 

  • McCauley, J. I., Meyer, B. J., Winberg, P. C., Ranson, M., & Skropeta, D. (2015). Selecting Australian marine macroalgae based on the fatty acid composition and anti-inflammatory activity. Journal of Applied Phycology, 27(5), 2111–2121.

    Article  CAS  Google Scholar 

  • Mendes, M., Pereira, R., Sousa Pinto, I., Carvalho, A. P., & Gomes, A. M. (2013). Antimicrobial activity and lipid profile of seaweed extracts from the North Portuguese Coast. International Food Research Journal, 20(6), 3337–3345.

    Google Scholar 

  • Mercer, P., & Armenta, R. E. (2011). Developments in oil extraction from microalgae European. Journal of Lipid Science and Technology, 113(5), 539–547.

    Article  CAS  Google Scholar 

  • Michalak, I., Tuhy, Ł, & Chojnacka, K. (2015). Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chemistry, 13(1), 1183–1195.

    CAS  Google Scholar 

  • Milović, S., Stanković, I., Nikolić, D., Radović, J., Kolundžić, M., Nikolić, V., Stanojković, T., Petović, S., & Kundaković-Vasović, T. (2019). Chemical analysis of selected seaweeds and seagrass from the adriatic coast of Montenegro. Chemistry & Biodiversity, 16(10), Article e1900327.

  • Miranda, J. M., Ortiz, J., Barros-Velázquez, J., & Aubourg, S. P. (2016). Quality enhancement of chilled fish by including alga Bifurcaria bifurcata extract in the icing medium. Food and Bioprocess Technology, 9, 387–395.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Temelli, F., & Ooraikul, B. (1993). Extraction and purification of ω-3 fatty acids with an emphasis on supercritical fluid extraction–A review. Food Research International, 26(3), 217–226.

    Article  CAS  Google Scholar 

  • Mišurcová, L., Ambrožová, J., & Samek, D. (2011). Seaweed lipids as nutraceuticals. Advances in Food and Nutrition Research, 64, 339–355.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, K., Beppu, F., Hosokawa, M., Liu, X., & Wang, S. (2020a). Bioactive significance of fucoxanthin and its effective extraction. Biocatalysis and Agricutural Biotechnology, 26, Article 101639.

  • Miyashita, K., Beppu, F., Hosokawa, M., Liu, X., & Wang, S. (2020b). Bioactive significance of fucoxanthin and its effective extraction. Biocatalysis and Agricultural Biotechnology, 26, article number 101639.

  • Mohamed, S. S., & Saber, A. A. (2019). Antifungal potential of the bioactive constituents in extracts of the mostly untapped brown seaweed Hormophysa cuneiformis from the Egyptian coastal waters. Egyptian Journal of Botany, 59(3), 695–708.

    Google Scholar 

  • Nicholls, S. J., & Nelson, A. J. (2020). The fish-oil paradox. Current Opinion in Lipidology, 31(6), 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, C. W., Holdt, S. L., Sloth, J. J., Marinho, G. S., Sæther, M., Funderud, J., & Rustad, T. (2020). Reducing the high iodine content of Saccharina latissima and improving the profile of other valuable compounds by water blanching. Foods, 9(5), Article number 569.

  • Noviendri, D., Jaswir, I., Salleh, H. M., Taher, T. J., Miyashita, K., & Ramli, N. (2011). Fucoxanthin extraction and fatty acid analysis of Sargassum binderi and S. duplicatum. Journal of Medicinal Plants Research, 5(11), 2405–2412.

    CAS  Google Scholar 

  • Otero, P., Quintana, S. E., Reglero, G., Fornari, T., & García-Risco, M. R. (2018). Pressurized liquid extraction (PLE) as an innovative green technology for the effective enrichment of Galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Marine Drugs, 16(5), Article number 156.

  • Paiva, L., Lima, E., Patarra, R. F., Neto, A. I., & Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164, 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Peñuela, A., Robledo, D., Bourgougnon, N., Bedoux, G., Hernández-Núñez, E., & Freile-Pelegrín, Y. (2018). Environmentally friendly valorization of Solieria filiformis (Gigartinales, rhodophyta) from IMTA using a biorefinery concept. Marine Drugs, 16(12), 487.

    Article  PubMed Central  CAS  Google Scholar 

  • Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., Rešek, E., Aschwin, E., & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Marine Drugs, 10(9), 1920–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Larrán, P., Torres, M. D., Flórez-Fernández, N., Balboa, E. M., Moure, A., & Domínguez, H. (2019). Green technologies for cascade extraction of Sargassum muticum bioactives. Journal of Applied Phycology, 31(4), 2481–2495.

    Article  CAS  Google Scholar 

  • Pinteus, S., Lemos, M. F. L., Simões, M., Alves, C., Silva, J., Gaspar, H., et al. (2020). Marine invasive species for high-value products’ exploration – Unveiling the antimicrobial potential of Asparagopsis armata against human pathogens. Algal Research, 52, 102091.

    Article  Google Scholar 

  • Plaza, M., Santoyo, S., Jaime, L., García-Blairsy Reina, G., Herrero, M., Señoráns, F. J., & Ibáñez, E. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran, S., Rajaram, R., Balasubramanian, V., & Mathivanan, K. (2012). Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pacific Journal of Tropical Biomedicine, 2(1), SUPPL., S316-S322.

  • Puértolas, E., Luengo, E., Álvarez, I., & Raso, J. (2012). Improving mass transfer to soften tissues by pulsed electric fields: Fundamentals and applications. Annual Reviews of Food Science and Technology, 3(1), 263–282.

    Article  CAS  Google Scholar 

  • Rajauria, G. (2019). In-vitro antioxidant properties of lipophilic antioxidant compounds from 3 brown seaweed. Antioxidants, 8(12), 596.

    Article  CAS  PubMed Central  Google Scholar 

  • Rey, F., Lopes, D., Maciel, E., Monteiro, J., Skjermo, J., Funderud, J., Raposo, D., Domingues, P., Calado, R., & Domingues, M. R. (2019). Polar lipid profile of Saccharina latissima, a functional food from the sea. Algal Research, 39, Article number 101473.

  • Řezanka, T., Kolouchová, I., & Mat’átková, O. (2021). Alternative sources of omega-3 polyunsaturated fatty acids. Studies in Natural Products Chemistry, 67, 123–159.

    Article  Google Scholar 

  • Ribeiro-Vidal, H., Sánchez, M. C., Alonso-Español, A., Figuero, E., Ciudad, M. J., Collado, L., Herrera, D., & Sanz, M. (2020). Antimicrobial activity of EPA and DHA against oral pathogenic bacteria using an in vitro multi-species subgingival biofilm model. Nutrients, 12(9), 2812, 1–17.

  • Richard, D., Kefi, K., Barbe, U., Bausero, P., & Visioli, F. (2008). Polyunsaturated fatty acids as antioxidants. Pharmacological Research, 57, 451–455.

    Article  CAS  PubMed  Google Scholar 

  • Rizos, E. C., & Elisaf, M. S. (2017). Does Supplementation with omega-3 PUFAs add to the prevention of cardiovascular disease? Current Cardiology Reports, 19(6), 47.

    Article  PubMed  Google Scholar 

  • Robertson, R. C., Guihéneuf, F., Bahar, B., Schmid, M., Stengel, D. B., Fitzgerald, G. F., Ross, R. P., & Stanton, C. (2015). The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Marine Drugs, 13(8), 5402–5424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh, M.-K., Uddin, Md. S., & Chun, B.-S. (2008). Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnology and Bioprocess Engineering, 13(6), 724–729.

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez, N., Beltrán, S., Jaime, I., de Diego, S. M., Sanz, M. T., & Carballido, J. R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innovotive Food Science and Emerging Technology, 11(1), 1–12.

    Article  CAS  Google Scholar 

  • Sabeena Farvin, K. H., & Jacobsen, C. (2012). New natural antioxidants for protecting omega-3 rich products. Lipid Technology, 24(3), 59–62.

    Article  CAS  Google Scholar 

  • Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N., & Omar, A. K. M. (2009). Application of supercritical CO2 in lipid extraction – A review. Journal of Food Engineering, 95(2), 240–253.

    Article  CAS  Google Scholar 

  • Saini, R. K., Mahomoodally, M. F., Sadeer, N. B., Keum, Y.-S., & Rengasamy, K. (2021). Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chemistry, 340, Article number 127897.

  • Santos, J. P., Guihéneuf, F., Fleming, G., Chow, F., & Stengel, D. B. (2019). Temporal stability in lipid classes and fatty acid profiles of three seaweed species from the north-eastern coast of Brazil. Algal Research, 41, Article number 101572.

  • Saravana, P. S., Getachew, A. T., Cho, Y.-J., Choi, J. H., Park, Y. B., Woo, H. C., & Chun, B. S. (2017). Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. Journal of Supercritical Fluids, 120, 295–303.

    Article  CAS  Google Scholar 

  • Saravana, P. S., Shanmugapriya, K., Gereniu, C. R. N., Chae, S.-J., Kang, H. W., Woo, H.-C., & Chun, B.-S. (2019). Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrasonics Sonochemistry, 55, 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M., & Stengel, D. B. (2015). Intra-thallus differentiation of fatty acid and pigment profiles in some temperate Fucales and Laminariales. Journal of Phycology, 51(1), 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M., Guihéneuf, F., & Stengel, D. B. (2014). Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. Journal of Applied Phycology, 26(1), 451–463.

    Article  CAS  Google Scholar 

  • Schmid, M., Guihéneuf, F., & Stengel, D. B. (2016). Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chemistry, 208(1), 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, M., Kraft, L. G. K., van der Loos, L. M., Kraft, G. T., Virtue, P., Nichols, P. D., & Hurd, C. L. (2018). Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry, 265, 70–77.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, M. B., Minihane, A. M., Saleh, R. N. M., & Risérus, U. (2020). Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: Nutritional implications for cardiometabolic diseases. The Lancet Diabetes & Endocrinology, 8(11), 915–930.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Wanasundara, U. N. (1998). Omega-3 fatty acid concentrates: Nutritional aspects and production technologies. Trends on Food Science & Technology, 9(6), 230–240.

    Article  CAS  Google Scholar 

  • Shang, Y. F., Kim, S. M., Lee, W. J., & Um, B. -H. (2011). Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. Journal of Bioscience and Bioengineering111(2), 237–241. https://doi.org/10.1016/j.jbiosc.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko, N. M., Anastyuk, S. D., Gerasimenko, N. I., Dmitrenok, P. S., Isakov, V. V., & Zvyagintseva, T. N. (2007). Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae. Russian Journal of Bioorganic Chemistry, 33(1), 88–98.

    Article  CAS  Google Scholar 

  • Shipeng, Y., Woo, H.-C., Choi, J.-H., Park, Y.-B., & Chun, B.-S. (2015). Measurement of antioxidant activities and phenolic and flavonoid contents of the brown seaweed Sargassum horneri: Comparison of supercritical CO2 and various solvent extractions. Fisheries and Aquatic Sciences, 18(2), 123–130.

    Article  Google Scholar 

  • Siahaan, E. A., Pangestuti, R., & Chun, B.-S. (2020). Antioxidant activity of two Korean seaweed oil obtained from SC-CO2 and solvent extraction. E3S Web f Conferecens, 147, 03014.

  • Sivagnanam, S. P., Yin, S., Choi, J. H., Park, Y. B., Woo, H. C., & Chun, B. S. (2015). Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Marine Drugs, 13(6), 3422–3442.

    Article  CAS  PubMed  Google Scholar 

  • Stabili, L., Acquaviva, M. I., Angilé, F., Cavallo, R. A., Cecere, E., Del Coco, L., Fanizzi, F. P., Gerardi, C., Narracci, M., & Petrocelli, A. (2019). Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Marine Drugs, 17(6), Article number 313.

  • Stabili, L., Acquaviva, M. I., Biandolino, F., Cavallo, R. A., de Pascali, S. A., Fanizzi, F. P., Narracci, M., Petrocelli, A., & Cecere, E. (2012). The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnology, 29(3), 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Stabili, L., Acquaviva, M. I., Biandolino, F., Cavallo, R. A., De Pascali, S. A., Fanizzi, F. P., Narracci, M., Cecere, E., & Petrocelli, A. (2014). Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. New Biotechnology, 31(5), 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Susanto, E., Fahmi, A. S., Hosokawa, M., & Miyashita, K. (2019). Variation in lipid components from 15 species of tropical and temperate seaweeds. Marine Drugs, 17(11), Article number 630.

  • Terme, N., Boulho, R., Kendel, M., Kucma, J.-P., Wielgosz-Collin, G., Bourgougnon, N., & Bedoux, G. (2017). Selective extraction of lipid classes from Solieria chordalis and Sargassum muticum using supercritical carbon dioxide and conventional solid–liquid methods. Journal of Applied Phycology, 29(5), 2513–2519.

    Article  CAS  Google Scholar 

  • Tian, Y., Demirel, S. E., Faruque Hasan, M. M., & Pistikopoulos, E. N. (2018). An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineering and Processing - Process Intensification, 133, 160–210.

    Article  CAS  Google Scholar 

  • Torres, M. D., Kraan, S., & Domínguez, H. (2019). Seaweed biorefinery. Reviews in Environmental Science and Biotechnology, 18(2), 335–388.

    Article  CAS  Google Scholar 

  • Trigo, M., Nozal, P., Miranda, J. M., Aubourg, S. P., & Barros-Velázquez, J. (2022). Antimicrobial and antioxidant effect of lyophilized Fucus spiralis addition on gelatin film during refrigerated storage of mackerel. Food Control, 131, 108416.

    Article  CAS  Google Scholar 

  • van der Wurff, I. S. M., Meyer, B. J., & de Groot, R. H. M. (2020). Effect of omega-3 long chain polyunsaturated fatty acids (N-3 LCPUFA) supplementation on cognition in children and adolescents: A systematic literature review with a focus on n-3 LCPUFA blood values and dose of DHA and EPA. Nutrients, 12(10), 1–28.

    Google Scholar 

  • Van Ginneken, V. J. T, Helsper, J. P. F. G., De Visser, W., Van Keulen, H., & Brandenburg, W. A. (2011). Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids in Health and Disease, 10, Article 104.

  • Vardanega, R., Santos, D. T., & Meireles, M. A. A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 8(16), 88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villeneuve, L., Alberti, L., Steghens, J. P., Lancelin, J. M., & Mestas, J. L. (2009). Assay of hydroxyl radicals generated by focused ultrasound. Ultrasonics Sonochemistry, 16, 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Vinoth-Kumar, R., Subbiah, M., & Ramu Ganesan, A. (2019). Recovery of aliphatic fatty acids from red seaweed Champia parvula (C. Agardh) and its antifungal action. Journal of Aquatic Food Product Technology, 28(9), 922–932.

    Article  CAS  Google Scholar 

  • Vorobiev, E., & Lebovka, N. (2010). Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Engineering Reviews, 2(2), 95–108.

    Article  CAS  Google Scholar 

  • Yang, W.-C., Zhang, Y.-Y., Li, Y.-J., Nie, Y.-Y., Liang, J.-Y., Liu, Y.-Y., Liu, J.-S., Zhang, Y.-P., Song, C., Qian, Z.-J., & Zhang, Y. (2020). Chemical composition and anti-Alzheimer’s disease-related activities of a functional oil from the edible seaweed Hizikia fusiforme. Chemistry & Biodiversity, 17(8), Article e2000055.

  • Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.-S., & Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules, 22(9), 1474.

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan, S., Wang, P., Xiao, L., Liang, Y., Huang, Y., Ye, H., Wu, K., & Lu, Y. (2020). Enrichment of lipids from agar production wastes of Gracilaria lemaneiformis by ultrasonication: A green sustainable process. Article in press.

    Google Scholar 

  • Zhou, H.-Y., & Liu, C.-Z. (2006). Microwave-assisted extraction of solanesol from tobacco leaves. Journal of Chromatography A, 1129(1), 135–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Díaz-Reinoso.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-González, I., Díaz-Reinoso, B. & Domínguez, H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. Food Bioprocess Technol 15, 978–997 (2022). https://doi.org/10.1007/s11947-021-02757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02757-1

Keywords

Navigation