Skip to main content

Cell Membrane Permeabilization by Pulsed Electric Fields for Efficient Extraction of Intercellular Components from Foods

  • Chapter
  • First Online:
Book cover Pulsed Electric Fields Technology for the Food Industry

Part of the book series: Food Engineering Series ((FSES))

Abstract

The chapter reviews applications of pulsed electric fields (PEF) for the efficient extraction of intercellular components from food plants. Mechanisms of cell membrane permeabilization by PEF including electroporation of plane membranes, spherical cells, cells with different shapes and sizes, and ensembles of cells and plant tissues are discussed. Different techniques to detect electroporation, PEF protocols, treatment chambers, and methods for optimization of PEF treatment are presented. Solid/liquid expression and solvent extraction assisted by PEF are described in detail. Numerous practical examples of PEF-enhanced extraction of intracellular compounds from foods (potatoes, apples, sugar crops, citruses, grapes, etc.) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

antioxidant activity

AC:

antioxidant capacity

AFM:

atomic force microscopy

CI:

color intensity

DM:

dry matter

EE:

ethanol extraction

FM:

fresh material

GAE:

gallic acid equivalent

HVED:

high voltage electrical discharges

ICUMSA:

International Commission for Uniform Methods of Sugar Analysis

MW:

microwave

OD:

osmotic dehydration

OH:

ohmic heating

PEF:

pulsed electric fields

SAE:

supplementary aqueous extraction

SEM:

scanning electron microscopy

SG:

solid gains

TAC:

total anthocyanin content

TEM:

transmission electron microscopy

TPC:

total phenolic compounds/content

TPI:

total polyphenol index

US:

ultrasound

WE:

aqueous extraction

WL:

water losses

°Brix:

Brix value

A :

area of cell

A P :

area of a single pore

a :

modulus of elasticity

b :

consolidation coefficient

C :

solute concentration in the solvent

C m :

specific capacitance of membrane

D :

diffusivity

d :

Diameter of a sample

d m :

thickness of membrane

E :

electric field strength

Fi :

Fick number

f e :

electroporation factor

f i :

relative fraction

f p :

density of pores in a membrane

G :

compressibility modulus

h :

height or thickness of a sample

k :

electrical conductivity contrast, k = σdu

k e :

hydraulic permeability of the extracellular space

k i :

hydraulic permeability of the intracellular space

k p :

hydraulic permeability of the pore

k B T :

thermal energy

m :

mass

n :

number of pulses

N p :

number of pores per cell

P :

pressure

P max :

fracture pressure

R :

radius of a cell

r c :

critical radius of a pore in a membrane

r p :

radius of a pore in a membrane

S :

firmness (stiffness) coefficient

S c :

specific surface of the cell

T :

temperature

T :

pressing time

t c :

time of a cell charging

t c,m :

time of a membrane charging

t p :

pulse duration

t PEF :

total time of PEF treatment, tPEF = ntp

U :

voltage

u m :

transmembrane potential (voltage)

W :

specific energy consumption

W a :

activation energy

W c :

maximum energy of pore formation in membrane

Y :

diffusion (juice) yield

Y c :

consolidation ratio

Z e :

fraction of electroporated cell

Z :

disintegration index

Z c :

electrical conductivity disintegration index

Z d :

diffusivity disintegration index

α :

transmembrane flow coefficient

α r :

aspect ratio

Δt :

distance between pulses (

ε :

relative deformation

γ :

surface tension

η :

viscosity

θ :

angle

ρ :

density

σ :

electrical conductivity

τ :

characteristic time

τ B :

consolidation time

τ d :

diffusion time

τ r :

retardation time

ω :

line tension

References

  • Aguilera JM (2003) Solid-liquid extraction. In: Extraction optimization in food engineering. Markel Dekker Inc., New York, pp 51–70

    Google Scholar 

  • Akiyama H, Heller R (eds) (2017) Bioelectrics. Springer, Japan

    Google Scholar 

  • Albagnac G, Varoquaux P, Montigaud J-C (2002) Technologies de transformation des fruits. TecDoc/Lavoisier, Paris

    Google Scholar 

  • Almohammed F, Mhemdi H, Vorobiev E (2016a) Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production. Appl Energy 162:49–57. https://doi.org/10.1016/j.apenergy.2015.10.050

    Article  CAS  Google Scholar 

  • Almohammed F, Mhemdi H, Vorobiev E (2016b) Several-staged alkaline pressing-soaking of electroporated sugar beet slices for minimization of sucrose loss. Innov Food Sci Emerg Technol 36:18–25. https://doi.org/10.1016/j.ifset.2016.05.011

    Article  CAS  Google Scholar 

  • Almohammed F, Koubaa M, Khelfa A, Nakaya M, Mhemdi H, Vorobiev E (2017a) Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food Bioprod Process 103:95–103. https://doi.org/10.1016/j.fbp.2017.03.005

    Article  CAS  Google Scholar 

  • Almohammed F, Mhemdi H, Vorobiev E (2017b) Purification of juices obtained with innovative pulsed electric field and alkaline pressing of sugar beet tissue. Sep Purif Technol 173:156–164. https://doi.org/10.1016/j.seppur.2016.09.026

    Article  CAS  Google Scholar 

  • Amami E, Vorobiev E, Kechaou N (2005) Effect of pulsed electric field on the osmotic dehydration and mass transfer kinetics of apple tissue. Dry Technol 23:581–595. https://doi.org/10.1081/DRT-200054144

    Article  CAS  Google Scholar 

  • Amami E, Vorobiev E, Kechaou N (2006) Modelling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field. LWT – Food Sci Technol 39:1014–1021. https://doi.org/10.1016/j.lwt.2006.02.017

    Article  CAS  Google Scholar 

  • Angersbach A, Heinz V, Knorr D (2002) Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnol Prog 18:597–603. https://doi.org/10.1021/bp020047j

    Article  CAS  PubMed  Google Scholar 

  • Apollonio F, Liberti M, Marracino P, Mir L (2012) Electroporation mechanism: review of molecular models based on computer simulation. In: 2012 6th European Conference on Antennas and Propagation (EUCAP). České Vysoké Učení Technické, Prague, pp 356–358

    Google Scholar 

  • Asavasanti S, Ersus S, Ristenpart W, Stroeve P, Barrett DM (2010) Critical electric field strengths of onion tissues treated by pulsed electric fields. J Food Sci 75:E433–E443. https://doi.org/10.1111/j.1750-3841.2010.01768.x

    Article  CAS  PubMed  Google Scholar 

  • Asavasanti S, Ristenpart W, Stroeve P, Barrett DM (2011a) Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. J Food Sci 76:E98–E111. https://doi.org/10.1111/j.1750-3841.2010.01940.x

    Article  CAS  PubMed  Google Scholar 

  • Asavasanti S, Ristenpart W, Stroeve P, Barrett DM (2011b) Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. J Food Sci 76(1):E96–E111. https://doi.org/10.1111/j.1750-3841.2010.01940.x

    Article  CAS  Google Scholar 

  • Asavasanti S, Stroeve P, Barrett DM, Jernstedt JA, Ristenpart WD (2012) Enhanced electroporation in plant tissues via low frequency pulsed electric fields: Influence of cytoplasmic streaming. Biotechnol Prog 28:445–453. https://doi.org/10.1002/btpr.1507

    Article  CAS  PubMed  Google Scholar 

  • Ashurst PR (2016) Chemistry and technology of soft drinks and fruit juices. Wiley, Chichester

    Google Scholar 

  • Azarpazhooh E, Ramaswamy HS (2009) Evaluation of diffusion and Azuara models for mass transfer kinetics during microwave-osmotic dehydration of apples under continuous flow medium-spray conditions. Dry Technol 28:57–67. https://doi.org/10.1080/07373930903430694

    Article  CAS  Google Scholar 

  • Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798. https://doi.org/10.1016/j.foodres.2015.09.015

    Article  Google Scholar 

  • Barbosa-Cánovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG (1998) Preservation of foods with pulsed electric fields. Academic Press, San Diego

    Google Scholar 

  • Bazhal IG, Gulyi IS (1983) Extraction of sugar from sugar-beet in a direct-current electric field. Food Technol Pishchevaya Tekhnologiya, Russ 5:49–51

    Google Scholar 

  • Bazhal M, Vorobiev E (2000) Electrical treatment of apple cossettes for intensifying juice pressing. J Sci Food Agric 80:1668–1674. https://doi.org/10.1002/1097-0010(20000901)80:11<1668::AID-JSFA692>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Bazhal M, Lebovka N, Vorobiev E (2003) Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues. Biosyst Eng 86:339–345. https://doi.org/10.1016/S1537-5110(03)00139-9

    Article  Google Scholar 

  • Ben Ammar J (2011) Etude de l’effet des champs electriques pulses sur la congelation des produits vegetaux. PhD Thesis, Compiegne: Universite de Technologie de Compiegne, France

    Google Scholar 

  • Ben Ammar J, Lanoisellé J-L, Lebovka NI, Van Hecke E, Vorobiev E (2010) Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophys 5:247–254. https://doi.org/10.1007/s11483-010-9167-y

  • Ben Ammar J, Lanoisellé J-L, Lebovka NI, Van Hecke E, Vorobiev E (2011a) Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. J Food Sci 76:E90–E97. https://doi.org/10.1111/j.1750-3841.2010.01893.x

  • Ben Ammar J, Van Hecke E, Lebovka N, Vorobiev E, Lanoisellé J-L 2011b Freezing and freeze-drying of vegetables: benefits of a pulsed electric fields pre-treatment. In: CIGR Section VI International Symposium on “Towards a Sustainable Food Chain Food Process, Bioprocessing and Food Quality Management.” Nantes, pp. 1–6

    Google Scholar 

  • Bio-Rad Laboratories I (2019) Electroporation. http://www.bio-rad.com

  • Blahovec J, Kouřím P, Kindl M (2015) Low-temperature carrot cooking supported by pulsed electric field—DMA and DETA thermal analysis. Food Bioprocess Technol 8:2027–2035. https://doi.org/10.1007/s11947-015-1554-4

    Article  CAS  Google Scholar 

  • Bodénès P (2017) Etude de l’application de champs électriques pulsés sur des microalgues en vue de l’extraction de lipides neutres. PhD Thesis, L’Universite Paris-Saclay preparee à l’Ecole Normale Superieure de Cachan (Ecole Normale Superieure Paris-Saclay)

    Google Scholar 

  • Bodénès P, Wang H-Y, Lee T-H, Chen H-Y, Wang C-Y (2019) Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. Biotechnol Biofuels 12:33. https://doi.org/10.1186/s13068-019-1369-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouzrara H, Vorobiev E (2000) Beet juice extraction by pressing and pulsed electric fields. Int Sugar J 102:194–200

    CAS  Google Scholar 

  • Bouzrara H, Vorobiev E (2001) Non-thermal pressing and washing of fresh sugarbeet cossettes combined with a pulsed electrical field. Zuckerindustrie 126:463–466

    CAS  Google Scholar 

  • BTX HA (2019) Electroporation & Electrofusion Products. http://www.harvardapparatus.com

  • Buchmann L, Mathys A (2019) Perspective on pulsed electric field treatment in the bio-based industry. Front Bioeng Biotechnol 7:265

    PubMed  PubMed Central  Google Scholar 

  • Buisman K (1936) Results of long duration settlement tests. In: Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, pp 103–107

    Google Scholar 

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80:755–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casciola M, Tarek M (2016) A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim Biophys Acta (BBA)-Biomembranes 1858:2278–2289

    CAS  Google Scholar 

  • Čemažar J, Miklavčič D, Kotnik T (2013) Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields–a review. Electron Components Mater 43:143–161

    Google Scholar 

  • Čemažar J, Ghosh A, Davalos RV (2017) Electrical manipulation and sorting of cells. In: Microtechnology for cell manipulation and sorting. Springer, pp 57–92

    Google Scholar 

  • Chalermchat Y, Dejmek P (2005) Effect of pulsed electric field pretreatment on solid--liquid expression from potato tissue. J Food Eng 71:164–169

    Google Scholar 

  • Chalermchat Y, Fincan M, Dejmek P (2004) Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: mathematical modelling of mass transfer. J Food Eng 64:229–236. https://doi.org/10.1016/j.jfoodeng.2003.10.002

    Article  Google Scholar 

  • Chalermchat Y, Malangone L, Dejmek P (2010) Electropermeabilization of apple tissue: effect of cell size, cell size distribution and cell orientation. Biosyst Eng 105:357–366. https://doi.org/10.1016/j.biosystemseng.2009.12.006

    Article  Google Scholar 

  • Chan C-H, Yusoff R, Ngoh G-C (2014) Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 92:1169–1186

    CAS  Google Scholar 

  • Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Li L, Shi J, Sheng Y, Lu W, Gallego-Perez D, Lee LJ (2016) Micro−/nanoscale electroporation. Lab Chip 16:4047–4062

    CAS  PubMed  Google Scholar 

  • Chanona-Pérez J, Quevedo R, Aparicio AJ, Chávez CG, Pérez JM, Dominguez GC, Alamilla-Beltrán L, Gutiérrez-López GF (2008) Image processing methods and fractal analysis for quantitative evaluation of size, shape, structure and microstructure in food materials. In: Gutiérrez-López GF, Welti-Chanes J, Parada-Arias E (eds) Food engineering: integrated approaches. Springer-Verlag, New York, pp 277–286

    Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    CAS  PubMed  Google Scholar 

  • Cheremisinoff NP (2017) Industrial liquid filtration equipment. In: Fibrous filter media. Woodhead Publishing, Duxford, pp 27–50

    Google Scholar 

  • Cohn F, Mendelsohn B (1879) Ueber Einwirkung des electrischen Stromes auf die Vermehrung von Bacterien (about the effect of electric current on the growth of bacteria). Beitrage Biol der Pflauzen 3:141–162

    Google Scholar 

  • Comuzzo P, Marconi M, Zanella G, Querze M (2018) Pulsed electric field processing of white grapes (cv. Garganega): Effects on wine composition and volatile compounds. Food Chem 264:16–23

    CAS  PubMed  Google Scholar 

  • Condello M, Caraglia M, Castellano M, Arancia G, Meschini S (2013) Structural and functional alterations of cellular components as revealed by electron microscopy. Microsc Res Tech 76:1057–1069

    PubMed  Google Scholar 

  • Couper JR, Penney WR, Fair JR, Walas SM (eds) (2012) Chemical process equipment-selection and design. Butterworth-Heinemann, Waltham

    Google Scholar 

  • Crank J (1979) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Das MK, Mukherjee PP, Muralidhar K (2018) Modeling transport phenomena in porous media with applications. Springer Nature Switzerland AG

    Google Scholar 

  • De Vito F, Ferrari G, Lebovka NI, Shynkaryk NV, Vorobiev E (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Google Scholar 

  • Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543

    CAS  PubMed  Google Scholar 

  • Dellarosa N, Laghi L, Ragni L, Dalla Rosa M, Galante A, Ranieri B, Florio TM, Alecci M (2018) Pulsed electric fields processing of apple tissue: Spatial distribution of electroporation by means of magnetic resonance imaging and computer vision system. Innov Food Sci Emerg Technol 47:120–126

    CAS  Google Scholar 

  • Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Peuchot MM (2012) Enhanced extraction of phenolic compounds from Merlot grapes by pulsed electric field treatment. Am J Enol Vitic 63:205–211

    CAS  Google Scholar 

  • Delsart C, Cholet C, Ghidossi R, Grimi N, Gontier E, Gény L, Vorobiev E, Mietton-Peuchot M (2014) Effects of pulsed electric fields on cabernet sauvignon grape berries and on the characteristics of wines. Food Bioprocess Technol 7:424–436. https://doi.org/10.1007/s11947-012-1039-7

    Article  CAS  Google Scholar 

  • Dimitrov DS, Sowers AE (1990) Membrane electroporation - fast molecular exchange by electroosmosis. Biochim Biophys Acta (BBA) – Biomembranes 1022:381–392

    CAS  Google Scholar 

  • Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13:968–987

    Google Scholar 

  • Donsi F, Ferrari G, Fruilo M, Pataro G (2010) Pulsed electric field-assisted vinification of Aglianico and Piedirosso grapes. J Agric Food Chem 58:11606–11615

    CAS  PubMed  Google Scholar 

  • Donsi F, Ferrari G, Fruilo M, Pataro G (2011) Pulsed electric fields-assisted vinification. Procedia Food Sci 1:780–785

    CAS  Google Scholar 

  • El Belghiti K, Vorobiev E (2004) Mass transfer of sugar from beets enhanced by pulsed electric field. Food Bioprod Process 82:226–230

    Google Scholar 

  • El Darra N, Grimi N, Maroun RG, Louka N, Vorobiev E (2013a) Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur Food Res Technol 236:47–56. https://doi.org/10.1007/s00217-012-1858-9

    Article  CAS  Google Scholar 

  • El Darra N, Grimi N, Vorobiev E, Louka N, Maroun R (2013b) Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol 6:1281–1289. https://doi.org/10.1007/s11947-012-0869-7

    Article  CAS  Google Scholar 

  • El Darra N, Rajha HN, Ducasse M-A, Turk MF, Grimi N, Maroun RG, Louka N, Vorobiev E (2016a) Effect of pulsed electric field treatment during cold maceration and alcoholic fermentation on major red wine qualitative and quantitative parameters. Food Chem 213:352–360. https://doi.org/10.1016/j.foodchem.2016.06.073

    Article  CAS  PubMed  Google Scholar 

  • El Darra N, Turk MF, Ducasse M-A, Grimi N, Maroun RG, Louka N, Vorobiev E (2016b) Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chem 194:944–950. https://doi.org/10.1016/j.foodchem.2015.08.059

    Article  CAS  PubMed  Google Scholar 

  • El-Belghiti K, Vorobiev E (2005) Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment. Biosyst Eng 90:289–294

    Google Scholar 

  • El-Belghiti K, Rabhi Z, Vorobiev E (2005a) Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. J Sci Food Agric 85:213–218

    CAS  Google Scholar 

  • El-Belghiti K, Rabhi Z, Vorobiev E (2005b) Effect of centrifugal force on the aqueous extraction of solute from sugar beet tissue pretreated by a pulsed electric field. J Food Process Eng 28:346–358

    Google Scholar 

  • Elton DC (2018) Stretched exponential relaxation. ArXiv Prepr arXiv 1808(00881):1–9

    Google Scholar 

  • Eppendorf VDG (2019) Eppendorf Eporator®, Operating manual. https://geneseesci.com/wp-content/uploads/2013/12/Eporator-Electroporator-User-Manual.pdf

  • Ersus S, Barrett DM (2010) Determination of membrane integrity in onion tissues treated by pulsed electric fields: use of microscopic images and ion leakage measurements. Innov Food Sci Emerg Technol 11:598–603. https://doi.org/10.1016/j.ifset.2010.08.001

    Article  CAS  Google Scholar 

  • Ersus S, Oztop MH, McCarthy MJ, Barrett DM (2010) Disintegration efficiency of pulsed electric field induced effects on onion (Allium cepa L.) tissues as a function of pulse protocol and determination of cell integrity by 1H-NMR relaxometry. J Food Sci 75:E444–E452. https://doi.org/10.1111/j.1750-3841.2010.01769.x

    Article  CAS  PubMed  Google Scholar 

  • Eshtiaghi MN, Yoswathana N (2012) Laboratory scale extraction of sugar cane using high electric field pulses. World Acad Sci Eng Technol 65:1217–1222

    Google Scholar 

  • Fazaeli M, Tahmasebi M, Djomeh EZ (2012) Characterization of food texture: application of microscopic technology. In: Méndez-Vilas A, Rigoglio NN, Mendes Silva MV, Guzman AM, Swindell WR (eds) Current Microscopy Contributions to Advances in Science and Technology. Formatex Research Center, Badajoz, pp 855–871

    Google Scholar 

  • Fincan M (2017) Potential application of pulsed electric fields for improving extraction of plant pigments. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 2171–2192

    Google Scholar 

  • Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230. https://doi.org/10.1016/S0260-8774(02)00079-1

    Article  Google Scholar 

  • Fincan M, Dejmek P (2003) Effect of osmotic pretreatment and pulsed electric field on the viscoelastic properties of potato tissue. J Food Eng 59:169–175

    Google Scholar 

  • Fincan M, DeVito F, Dejmek P (2004) Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. J Food Eng 64:381–388. https://doi.org/10.1016/j.jfoodeng.2003.11.006

    Article  Google Scholar 

  • Flaumenbaum B (1949) Electrical treatment of fruits and vegetables before extraction of juice. Proc Odessa Technol Inst Cann Ind (Trudy OTIKP, Odess Tehnol Instituta Konservn Promyshlennosti) 3:15–20 (in Russian)

    Google Scholar 

  • Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474

    CAS  PubMed  Google Scholar 

  • Gachovska TK, Ngadi M, Chetti M, Raghavan GS V (2013) Enhancement of lycopene extraction from tomatoes using pulsed electric field. In: 2013 19th IEEE Pulsed Power Conference (PPC), pp 1–5

    Google Scholar 

  • Garcia-Gonzalo D, Pagán R (2016) Detection of electroporation in microbial cells: techniques and procedures. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 1–15

    Google Scholar 

  • Garde-Cerdán T, González-Arenzana L, López N, López R, Santamaría P, López-Alfaro I (2013) Effect of different pulsed electric field treatments on the volatile composition of Graciano, Tempranillo and Grenache grape varieties. Innov Food Sci Emerg Technol 20:91–99. https://doi.org/10.1016/j.ifset.2013.08.008

    Article  CAS  Google Scholar 

  • Gekas V (1992) Transport phenomena of foods and biological materials. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Gowrishankar TR, Weaver JC (2003) An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci 100:3203–3208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimi N (2009) Vers l’intensification du pressage industriel des agroressources par champs électriques pulsés: étude multi-échelles. PhD thesis, Compiegne: Universite de Technologie de Compiegne, France

    Google Scholar 

  • Grimi N, Lebovka N, Vorobiev E, Vaxelaire J (2009a) Compressing behavior and texture evaluation for potatoes pretreated by pulsed electric field. J Texture Stud 40:208–224

    Google Scholar 

  • Grimi N, Lebovka NI, Vorobiev E, Vaxelaire J (2009b) Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophys 4:191–198. https://doi.org/10.1007/s11483-009-9117-8

    Article  Google Scholar 

  • Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2010a) Acoustic impulse response in apple tissues treated by pulsed electric field. Biosyst Eng 105:266–272. https://doi.org/10.1016/j.biosystemseng.2009.11.005

    Article  Google Scholar 

  • Grimi N, Vorobiev E, Lebovka N, Vaxelaire J (2010b) Solid-liquid expression from denaturated plant tissue: filtration–consolidation behaviour. J Food Eng 96:29–36

    Google Scholar 

  • Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2011) Impact of apple processing modes on extracted juice quality: pressing assisted by pulsed electric fields. J Food Eng 103:52–61

    CAS  Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyi IS, Lebovka NI, Mank V V, Kupchik MP, Bazhal MI, Matvienko AB, Papchenko AY (1994) Scientific and practical principles of electrical treatment of food products and materials. UkrINTEI (in Russian), Kiev

    Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta (BBA)-General Subj 148:789–800

    CAS  Google Scholar 

  • Heilbron JL (1979) Electricity in the 17th and 18th centuries: A study of early modern physics. Univ of California Press

    Google Scholar 

  • Heimburg T (1998) Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim Biophys Acta (BBA) – Biomembranes 1415:147–162

    CAS  Google Scholar 

  • Henslee BE, Morss A, Hu X, Lafyatis GP, Lee LJ (2014) Cell-cell proximity effects in multi-cell electroporation. Biomicrofluidics 8:52002

    Google Scholar 

  • Hjouj M, Rubinsky B (2010) Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol 236:137–146

    CAS  PubMed  Google Scholar 

  • Holl MMB (2008) Cell plasma membranes and phase transitions. In: Pollack GH, Chin W-C (eds) Phase transitions in cell biology. Springer, pp 171–181

    Google Scholar 

  • Hülsheger H, Niemann E-G (1980) Lethal effects of high-voltage pulses on E. coli K12 Radiat Environ Biophys 18:281–288

    PubMed  Google Scholar 

  • Hülsheger H, Potel J, Niemann E-G (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    PubMed  Google Scholar 

  • Hülsheger H, Potel J, Niemann E-G (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22:149–162

    PubMed  Google Scholar 

  • Ingram M, Page LJ (1953) The survival of microbes in modulated high-frequency voltage fields. In: Proceedings of the Society for Applied Bacteriology, pp 69–87

    Google Scholar 

  • Jackman RL, Smith JL (1996) Anthocyanins and betalains. In: Hendry GAF, Houghton JD (eds) Natural food colorants. Springer, Dordrecht, pp 244–309

    Google Scholar 

  • Jaeger H, Schulz A, Karapetkov N, Knorr D (2009) Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus. Int J Food Microbiol 134:154–161

    CAS  PubMed  Google Scholar 

  • Jemai A (1997) Contribution à l’étude de l’effet d’un traitement électrique sur les cossettes de betterave à sucre: incidence sur le procédé d’extraction. Thèse de Doctorat, Université de Technologie de Compiègne, France

    Google Scholar 

  • Jemai AB, Vorobiev E (2002) Effect of moderate electric field pulses on the diffusion coefficient of soluble substances from apple slices. Int J Food Sci Technol 37:73–86

    CAS  Google Scholar 

  • Jemai AB, Vorobiev E (2003) Enhanced leaching from sugar beet cossettes by pulsed electric field. J Food Eng 59:405–412. https://doi.org/10.1016/S0260-8774(02)00499-5

    Article  Google Scholar 

  • Jönsson KA-S, Jönsson BTL (1992) Fluid flow in compressible porous media: I: Steady-state conditions. AICHE J 38:1340–1348. https://doi.org/10.1002/aic.690380904

    Article  Google Scholar 

  • Kantar S El, Boussetta N, Lebovka N, Foucart F, Rajha HN, Maroun RG, Louka N, Vorobiev E (2018) Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov Food Sci Emerg Technol 46:153–161. https://doi.org/10.1016/j.ifset.2017.09.024

  • Karathanos VT, Kanellopoulos NK, Belessiotis VG (1996) Development of porous structure during air drying of agricultural plant products. J Food Eng 29:167–183

    Google Scholar 

  • Kinosita K Jr, Tsong TY (1977a) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta (BBA) – Biomembranes 471:227–242

    CAS  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977b) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438

    PubMed  Google Scholar 

  • Kinosita K, Tsong TT (1977) Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci 74:1923–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr D, Geulen M, Grahl T, Sitzmann W (1994a) Energy cost of high electric field pulse treatment: reply. Trends Food Sci Technol 5:265

    Google Scholar 

  • Knorr D, Geulen M, Grahl T, Sitzmann W (1994b) Food application of high electric field pulses. Trends Food Sci Technol 5:71–75

    CAS  Google Scholar 

  • Kogan FY (1968) Electrophysical methods in canning technologies of foodstuff. Tekhnica (in Russian), Kiev

    Google Scholar 

  • Kotnik T, Miklavčič D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Pucihar G (2010) Induced transmembrane voltage-theory, modeling, and experiments. In: Pakhomov AG, Miklavčič D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor & Francis Group, Boca Raton, pp 51–70

    Google Scholar 

  • Kotnik T, Bobanovic F, Miklavčič D (1997) Sensitivity of transmembrane voltage induced by applied electric fields: a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    CAS  Google Scholar 

  • Kotnik T, Miklavčič D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields: a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    CAS  Google Scholar 

  • Kranjc M, Miklavčič D (2017) Electric field distribution and electroporation threshold. In: Miklavčič D (ed) Handbook of electroporation. Springer, Cham, pp 1043–1058

    Google Scholar 

  • Lanoisellé J-L, Vorobyov EI, Bouvier J-M, Pair G (1996) Modeling of solid/liquid expression for cellular materials. AICHE J 42:2057–2068

    Google Scholar 

  • Lazarenko BR, Fursov SSP, Bordijan JA, Chebanu VG (1977) Electroplasmolysis. Cartea Moldoveneascu, Chisinau

    Google Scholar 

  • Lebedeva NE (1987) Electric breakdown of bilayer lipid membranes at short times of voltage action. Biol Membr (Biochem Moscow Ser A Membr Cell Biol) 4:994–998 (in Russian)

    Google Scholar 

  • Lebovka NI, Vorobiev EI (2004) On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields. Int J Food Microbiol 91:83–89

    CAS  PubMed  Google Scholar 

  • Lebovka N, Vorobiev E (2007) The kinetics of inactivation of spheroidal microbial cells by pulsed electric fields. ArXiv Prepr arXiv 0704(2750):1–18

    Google Scholar 

  • Lebovka N, Vorobiev E (2011) Food and biomaterials processing assisted by electroporation. In: G PA, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Taylor & Francis Group, Boca Raton, pp 463–490

    Google Scholar 

  • Lebovka N, Vorobiev E (2014) Techniques and procedures to detect electroporation in food cellular tissues. In: Raso J, Álvarez I (eds) Proceedings of the COST TD1104 school on applications of pulsed electric fields for food processing. Servicio de publicaciones, Zaragoza, pp 39–50

    Google Scholar 

  • Lebovka N, Vorobiev E (2016) Techniques to detect electroporation in food tissues. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 1–23

    Google Scholar 

  • Lebovka NI, Melnyk RM, Kupchik MP, Bazhal MI, Serebrjakov RA (2000) Local generation of ohmic heat on cellular membranes during the electrical treatment of biological tissues. Sci Pap Naukma 18:51–56 

    Google Scholar 

  • Lebovka NI, Bazhal MI, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innov Food Sci Emerg Technol 2:113–125

    Google Scholar 

  • Lebovka NI, Bazhal MI, Vorobiev E (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346

    Google Scholar 

  • Lebovka NI, Praporscic I, Vorobiev E (2003) Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: consolidation stages analysis. J Food Eng 59:309–317

    Google Scholar 

  • Lebovka N, Praporscic I, Vorobiev E (2004a) Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innov Food Sci Emerg Technol 5:9–16

    Google Scholar 

  • Lebovka N, Praporscic I, Vorobiev E (2004b) Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. J Food Eng 65:211–217

    Google Scholar 

  • Lebovka NI, Praporscic I, Ghnimi S, Vorobiev E (2005a) Temperature enhanced electroporation under the pulsed electric field treatment of food tissue. J Food Eng 69:177–184

    Google Scholar 

  • Lebovka NI, Praporscic I, Ghnimi S, Vorobiev E (2005b) Does electroporation occur during the ohmic heating of food? J Food Sci 70:E308–E311

    CAS  Google Scholar 

  • Lebovka N, Shynkaryk N, El-Belghiti K, Benjelloun H, Vorobiev E (2007a) Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. J Food Eng 80:639–644

    Google Scholar 

  • Lebovka NI, Shynkaryk M, Vorobiev E (2007b) Moderate electric field treatment of sugarbeet tissues. Biosyst Eng 96:47–56

    Google Scholar 

  • Lee EW, Wong D, Prikhodko SV, Perez A, Tran C, Loh CT, Kee ST (2012) Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J Vasc Interv Radiol 23:107–113

    PubMed  Google Scholar 

  • Leong HY, Show PL, Lim MH, Ooi CW, Ling TC (2018) Natural red pigments from plants and their health benefits: a review. Food Rev Int 34:463–482

    CAS  Google Scholar 

  • Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N (2016) Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int J Mol Sci 17:986

    PubMed Central  Google Scholar 

  • Liu Z-W, Zeng X-A, Ngadi M (2018) Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). J Food Process Preserv 42:e13755

    Google Scholar 

  • Liu T, Burritt DJ, Oey I (2019) Understanding the effect of Pulsed Electric Fields on multilayered solid plant foods: Bunching onions (Allium fistulosum) as a model system. Food Res Int 120:560–567. https://doi.org/10.1016/j.foodres.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Grimi N, Bals O, Lebovka N, Vorobiev E (2021) Effects of pulsed electric fields and preliminary vacuum drying on freezing assisted processes in potato tissue. Food Bioprod Process 125:126–133. https://doi.org/10.1016/j.fbp.2020.11.002

  • Loginov M, Loginova K, Lebovka N, Vorobiev E (2011) Comparison of dead-end ultrafiltration behaviour and filtrate quality of sugar beet juices obtained by conventional and “cold” PEF-assisted diffusion. J Memb Sci 377:273–283

    CAS  Google Scholar 

  • Loginova K (2011) Mise en oeuvre de champs électriques pulsés pour la conception d’un procédé de diffusion à froid à partir de betteraves à sucre et d’autres tubercules alimentaires (étude multi-échelle). Universite de Technologie de Compiegne, France, Compiegne

    Google Scholar 

  • Loginova KV, Shynkaryk MV, Lebovka NI, Vorobiev E (2010) Acceleration of soluble matter extraction from chicory with pulsed electric fields. J Food Eng 96:374–379

    Google Scholar 

  • Loginova K, Loginov M, Vorobiev E, Lebovka NI (2011a) Quality and filtration characteristics of sugar beet juice obtained by “cold” extraction assisted by pulsed electric field. J Food Eng 106:144–151

    CAS  Google Scholar 

  • Loginova KV, Lebovka NI, Vorobiev E (2011b) Pulsed electric field assisted aqueous extraction of colorants from red beet. J Food Eng 106:127–133. https://doi.org/10.1016/j.jfoodeng.2011.04.019

    Article  CAS  Google Scholar 

  • Loginova KV, Vorobiev E, Bals O, Lebovka NI (2011c) Pilot study of countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by pulsed electric fields. J Food Eng 102:340–347

    Google Scholar 

  • Loginova K, Loginov M, Vorobiev E, Lebovka NI (2012) Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT – Food Sci Technol 46:371–374

    CAS  Google Scholar 

  • López N, Puértolas E, Condón S, Álvarez I, Raso J (2008a) Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov Food Sci Emerg Technol 9:477–482

    Google Scholar 

  • López N, Puértolas E, Condón S, Álvarez I, Raso J (2008b) Application of pulsed electric fields for improving the maceration process during vinification of red wine: influence of grape variety. Eur Food Res Technol 227:1099

    Google Scholar 

  • López N, Puértolas E, Condón S, Raso J, Alvarez I (2009) Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng 90:60–66. https://doi.org/10.1016/j.jfoodeng.2008.06.002

    Article  CAS  Google Scholar 

  • López-Alfaro I, González-Arenzana L, López N, Santamaria P, Lopez R, Garde-Cerdan T (2013) Pulsed electric field treatment enhanced stilbene content in Graciano, Tempranillo and Grenache grape varieties. Food Chem 141:3759–3765. https://doi.org/10.1016/j.foodchem.2013.06.082

    Article  CAS  PubMed  Google Scholar 

  • López-Giral N, González-Arenzana L, González-Ferrero C, López R, Santamaría P, López-Alfaro I, Garde-Cerdán T (2015) Pulsed electric field treatment to improve the phenolic compound extraction from Graciano, Tempranillo and Grenache grape varieties during two vintages. Innov Food Sci Emerg Technol 28:31–39. https://doi.org/10.1016/j.ifset.2015.01.003

    Article  CAS  Google Scholar 

  • Lu R, Abbott JA (2004) Force/deformation techniques for measuring texture. In: Kilcast D (ed) Texture in food: Solid foods. Woodhead Publishing, Sawston, Cambridge, pp 109–145

    Google Scholar 

  • Luengo E, Álvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg Technol 17:79–84

    CAS  Google Scholar 

  • Luengo E, Álvarez I, Raso J (2014a) Improving carotenoid extraction from tomato waste by pulsed electric fields. Front Nutr 1:12. https://doi.org/10.3389/fnut.2014.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luengo E, Franco E, Ballesteros F, Álvarez I, Raso J (2014b) Winery trial on application of pulsed electric fields for improving vinification of Garnacha grapes. Food Bioprocess Technol 7:1457–1464. https://doi.org/10.1007/s11947-013-1209-2

    Article  CAS  Google Scholar 

  • Luengo E, Martinez JM, Álvarez I, Raso J (2016) Comparison of the efficacy of pulsed electric fields treatments in the millisecond and microsecond range for the extraction of betanine from red beetroot. In: Jarm T, Kramar P (eds) International Federation for Medical and Biological Engineering (IFMBE) Proceedings. Springer, pp 375–378

    Google Scholar 

  • Mahnič-Kalamiza S (2016) Dual-porosity model of liquid extraction by pressing from plant tissue modified by electroporation. In: Handbook of electroporation. Springer International Publishing AG, Cham, pp 1–25

    Google Scholar 

  • Mahnič-Kalamiza S, Vorobiev E (2014) Dual-porosity model of liquid extraction by pressing from biological tissue modified by electroporation. J Food Eng 137:76–87

    Google Scholar 

  • Mahnič-Kalamiza S, Miklavčič D, Vorobiev E (2015) Dual-porosity model of mass transport in electroporated biological tissue: simulations and experimental work for model validation. Innov Food Sci Emerg Technol 29:41–54

    Google Scholar 

  • Matov BI, Reshetko E V (1968) Electrophysical methods in food industry. Kartja Moldavenjaske, Kishinev (in Russian)

    Google Scholar 

  • Mavroudis NE, Gekas V, Sjöholm I (1998) Osmotic dehydration of apples. Shrinkage phenomena and the significance of initial structure on mass transfer rates. J Food Eng 38:101–123

    Google Scholar 

  • Mercadal B, Vernier PT, Ivorra A (2016) Dependence of electroporation detection threshold on cell radius: an explanation to observations non compatible with Schwan’s equation model. J Membr Biol 249:663–676

    CAS  PubMed  Google Scholar 

  • Mhemdi H, Bals O, Grimi N, Vorobiev E (2014) Alternative pressing/ultrafiltration process for sugar beet valorization: impact of pulsed electric field and cossettes preheating on the qualitative characteristics of juices. Food Bioprocess Technol 7:795–805

    CAS  Google Scholar 

  • Mhemdi H, Almohammed F, Bals O, Grimi N, Vorobiev E (2015) Impact of pulsed electric field and preheating on the lime purification of raw sugar beet expressed juices. Food Bioprod Process 95:323–331

    CAS  Google Scholar 

  • Mhemdi H, Bals O, Vorobiev E (2016) Combined pressing-diffusion technology for sugar beets pretreated by pulsed electric field. J Food Eng 168:166–172

    Google Scholar 

  • Miklavčič D (ed) (2017) Handbook of electroporation. Springer, Cham

    Google Scholar 

  • Monteith H, Parker W (2016) Emissions from wastewater treatment plants. In: Tata P, Witherspoon J, Lue-Hing C (eds) VOC emissions from biosolid’s dewatering processes. CRC Press, Taylor & Francis Group, Boca Raton, pp 171–188

    Google Scholar 

  • Moses BD (1938) Electric pasteurization of milk. Agric Eng 19:525–526

    Google Scholar 

  • Mushtaq M (2018) Extraction of fruit juice: An overview. In: Rajauria G, Tiwari BK (eds) Fruit juices. Elsevier, pp 131–159

    Google Scholar 

  • Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J (2018) Anti-inflammatory properties of edible mushrooms: a review. Food Chem 243:373–381

    PubMed  Google Scholar 

  • Nandakumar R, Eyres GT, Burritt DJ, Kebede B, Leus M, Oey I (2018) Impact of pulsed electric fields on the volatile compounds produced in whole onions (Allium cepa and Allium fistulosum). Foods 7:1–15. https://doi.org/10.3390/foods7110183

  • Napotnik TB, Miklavčič D (2018) In vitro electroporation detection methods–an overview. Bioelectrochemistry 120:166–182

    Google Scholar 

  • Nelson WM (2003) Green solvents for chemistry: perspectives and practice. Oxford University Press

    Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471

    CAS  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    CAS  PubMed  Google Scholar 

  • Noelia V, Puértolas E, Hernández-Orte P, Álvarez I, Raso J (2009) Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT – Food Sci Technol 42:1225–1231

    Google Scholar 

  • Nyrop JE (1946) A specific effect of high-frequency electric currents on biological objects. Nature 157:51. https://doi.org/10.1038/157051a0

    Article  CAS  PubMed  Google Scholar 

  • Olson RE (1986) State of the art: consolidation testing. In: Yong RN, Townsend FC (eds) Consolidation of Soils: Testing and Evaluation. ASTM Special technical publication 892. American Society for Testing and Materials, Philadelphia, pp 7–70

    Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Miklavčič D, Markov MS (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  • Parniakov O, Lebovka NI, Van Hecke E, Vorobiev E (2014) Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus). Food Bioprocess Technol 7:174–183

    CAS  Google Scholar 

  • Pataro G, Carullo D, Siddique MAB, Falcone M, Donsì F, Ferrari G (2018) Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J Food Eng 233:65–73. https://doi.org/10.1016/j.jfoodeng.2018.03.029

    Article  CAS  Google Scholar 

  • Pavlin M, Pavselj N, Miklavčič D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. Biomed Eng IEEE Trans 49:605–612

    Google Scholar 

  • Peiró S, Luengo E, Segovia F, Raso J, Almajano MP (2019) Improving polyphenol extraction from lemon residues by pulsed electric fields. Waste and Biomass Valorization 10:889–897

    Google Scholar 

  • Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols M-P (2016) Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci Rep 6:19778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Poel PW, Schiweck H, Schwartz T (1998) Sugar technology. Beet and Cane Sugar Manufacture. Bartens KG, Berlin

    Google Scholar 

  • Pourzaki A, Mirzaee H (2008) Pulsed electric field generators in food processing. In: 18-th National Congress on Food Technology in Mashhad (Iran), pp 1–7

    Google Scholar 

  • Praporscic I, Muravetchi V, Vorobiev E (2004) Constant rate expressing of juice from biological tissue enhanced by pulsed electric field. Dry Technol 22:2395–2408

    Google Scholar 

  • Praporscic I, Ghnimi S, Vorobiev E (2005) Enhancement of pressing of sugar beet cuts by combined ohmic heating and pulsed electric field treatment. J Food Process Preserv 29:378–389

    Google Scholar 

  • Praporscic I, Lebovka N, Vorobiev E, Mietton-Peuchot M (2007) Pulsed electric field enhanced expression and juice quality of white grapes. Sep Purif Technol 52:520–526. https://doi.org/10.1016/j.seppur.2006.06.007

    Article  CAS  Google Scholar 

  • Pucihar G, Kotnik T, Teissié J, Miklavčič D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185

    PubMed  Google Scholar 

  • Puértolas E, Hernández-Orte P, Sladaña G, Álvarez I, Raso J (2010a) Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res Int 43:761–766. https://doi.org/10.1016/j.foodres.2009.11.005

    Article  CAS  Google Scholar 

  • Puértolas E, López N, Sladaña G, Álvarez I, Raso J (2010b) Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J Food Eng 98:120–125. https://doi.org/10.1016/j.jfoodeng.2009.12.017

    Article  CAS  Google Scholar 

  • Puri M (2017) Food bioactives: extraction and biotechnology applications. Springer, Cham

    Google Scholar 

  • Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A (2017) Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes: a review. Molecules 22(5):680. https://doi.org/10.3390/molecules22050680

    Article  CAS  PubMed Central  Google Scholar 

  • Qin B-L, Zhang Q, Barbosa-Cánovas GV, Swanson BG, Pedrow PD (1994) Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Trans Dielectr Electr Insul 1:1047–1057. https://doi.org/10.1109/94.368658

    Article  Google Scholar 

  • Qin Y, Lai S, Jiang Y, Yang T, Wang J (2005) Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis. Bioelectrochemistry 67:57–65

    Google Scholar 

  • Qingwen Q, Xiaoqing H, Chunmei L, Dejun Z, Ya L (2018) Study on modular design and key technology of screw pressing for sludge treatment system. J Eng Manuf Technol 6(1):1–7

    Google Scholar 

  • Ramos A, Suzuki DOH, Marques JLB (2006) Numerical study of the electrical conductivity and polarization in a suspension of spherical cells. Bioelectrochemistry 68:213–217

    CAS  PubMed  Google Scholar 

  • Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, Miklavčič D (2016) Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov Food Sci Emerg Technol 37:312–321

    Google Scholar 

  • Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition 5:35–46

    Google Scholar 

  • Reberšek M, Miklavčič D (2011) Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika 52:12–19

    Google Scholar 

  • Reberšek M, Miklavčič D, Bertacchini C, Sack M (2014) Cell membrane electroporation-Part 3: the equipment. IEEE Electr Insul Mag 30:8–18

    Google Scholar 

  • Rems L, Miklavčič D (2016) Tutorial: Electroporation of cells in complex materials and tissue. J Appl Phys 119:201101

    Google Scholar 

  • Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M (2019) The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry 125:46–57

    CAS  PubMed  Google Scholar 

  • Riemann F, Zimmermann U, Pilwat G (1975) Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochim Biophys Acta (BBA) – Biomembranes 394:449–462

    CAS  Google Scholar 

  • Rockenbach A, Sudarsan S, Berens J, Kosubek M, Lazar J, Demling P, Hanke R, Mennicken P, Ebert BE, Blank LM, Others (2019) Microfluidic irreversible electroporation - a versatile tool to extract intracellular contents of bacteria and yeast. Meta 9:211

    CAS  Google Scholar 

  • Rodriguez-Amaya DB (2019) Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Res Int 124:200–205

    CAS  PubMed  Google Scholar 

  • Rogov IA (1988) Electrophysical methods of foods product processing. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Rols M-P (2006) Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta (BBA) – Biomembranes 1758:423–428

    CAS  Google Scholar 

  • Rols M-P, Teissié J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098. https://doi.org/10.1016/S0006-3495(90)82451-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rondeau C, Le Quéré J-M, Turk M, Mariette F, Vorobiev E, Baron A (2012) The de-structuration of parenchyma cells of apple induced by pulsed electric fields: a TD-NMR investigation. In: Proceeding of the International Conference Bio & Food Electrotechnologies (BFE 2012), Book of Full Papers. ProdAl Scarl, Società consortile a responsabilità limitata, c/o University of Salerno, Fisciano, Italy, p 5

    Google Scholar 

  • Roselló-Soto E, Parniakov O, Deng Q, Patras A, Koubaa M, Grimi N, Boussetta N, Tiwari BK, Vorobiev E, Lebovka N, Others (2016) Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Eng Rev 8:214–234

    Google Scholar 

  • Rousserie P, Rabot A, Geny-Denis L (2019) From flavanols biosynthesis to wine tannins: what place for grape seeds? J Agric Food Chem 67:1325–1343

    CAS  PubMed  Google Scholar 

  • Rumble JR (ed) (2019) CRC handbook of chemistry and physics. CRC Press, Taylor & Fransis Group, Boca Raton

    Google Scholar 

  • Russ JC, Neal FB (2016) The image processing handbook. CRC press, Boca Raton

    Google Scholar 

  • Sack M, Sigler J, Frenzel S, Eing C, Arnold J, Michelberger T, Frey W, Attmann F, Stukenbrock L, Müller G (2010) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156

    CAS  Google Scholar 

  • Saldaña G, Luengo E, Puértolas E, Álvarez I, Raso J (2017) Pulsed electric fields in wineries: Potential applications. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 2825–2842

    Google Scholar 

  • Sale A, Hamilton W (1967) Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim Biophys Acta 148:781–788

    Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta (BBA) – Biomembranes 163:37–43

    CAS  Google Scholar 

  • Saravacos GD, Krokida M (2014) Mass transfer properties of foods. In: Engineering properties of foods. CRC Press, Boca Raton, pp 349–402

    Google Scholar 

  • Saulis G (1997) Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J 73:1299–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartzberg HG (1997) Expression of fluid from biological solids. Sep Purif Methods 26:1–213

    Google Scholar 

  • Schwartzberg HG, Chao RY (1982) Solute diffusivities in leaching processes. Food Technol 36:73–86

    CAS  Google Scholar 

  • Sheikh SM, Kazi ZS (2016) Technologies for oil extraction: a review. Int J Environ Agric Biotechnol 1(2):106–110

    Google Scholar 

  • Shirato M, Murase T, Atsumi K (1980) Simplified computational method for constant pressure expression of filter cakes. J Chem Eng Japan 13:397–401

    CAS  Google Scholar 

  • Shirato M, Murase T, Iwata M, Nakatsuka S (1986) The Terzaghi-Voigt combined model for constant-pressure consolidation of filter cakes and homogeneous semi-solid materials. Chem Eng Sci 41:3213–3218

    CAS  Google Scholar 

  • Sitzmann W, Vorobiev E, Lebovka N (2016a) Applications of electricity and specifically pulsed electric fields in food processing: Historical backgrounds. Innov Food Sci Emerg Technol 37:302–311

    Google Scholar 

  • Sitzmann W, Vorobiev E, Lebovka N (2016b) Pulsed electric fields for food industry: historical overview. In: Miklavčič D (ed) Handbook of electroporation. Springer, Cham, pp 1–20

    Google Scholar 

  • Stämpfli R (1958) Reversible electrical breakdown of the excitable membrane of a Ranvier node. An da Acad Bras Ciências (Annals Brazilian Acad Sci) 30:57–63

    Google Scholar 

  • Stämpfli R, Willi M (1957) Membrane potential of a Ranvier node measured after electrical destruction of its membrane. Experientia 13:297–298

    PubMed  Google Scholar 

  • Suchanek M, Olejniczak Z (2018) Low field MRI study of the potato cell membrane electroporation by pulsed electric field. J Food Eng 231:54–60

    CAS  Google Scholar 

  • Suchodolskis A, Stirke A, Timonina A, Ramanaviciene A, Ramanavicius A (2011) Baker’s yeast transformation studies by Atomic Force Microscopy. Adv Sci Lett 4:171–173

    Google Scholar 

  • Sugar IP, Förster W, Neumann E (1987) Model of cell electrofusion: membrane electroporation, pore coalescence and percolation. Biophys Chem 26:321–335

    CAS  PubMed  Google Scholar 

  • Susil R, Semrov D, Miklavčič D (1998) Electric field-induced transmembrane potential depends on cell density and organization. Electro- and Magnetobiology 17:391–399

    Google Scholar 

  • Taylor B (2016) Fruit and juice processing. In: Ashurst PR (ed) Chemistry and technology of soft drinks and fruit juices. John Wiley & Sons, Ltd., Chichester, pp 31–64

    Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tien HT, Ottova A (2003) The bilayer lipid membrane (BLM) under electrical fields. IEEE Trans Dielectr Electr Insul 10:717–727

    CAS  Google Scholar 

  • Tiwari BK, Cullen PJ (2012) Extraction of red beet pigments. In: Neelwarne B (ed) Red Beet Biotechnology: food and Pharmaceutical Applications. Springer, New York, pp 373–391

    Google Scholar 

  • To VHP, Nguyen TV, Vigneswaran S, Ngo HH (2016) A review on sludge dewatering indices. Water Sci Technol 74:1–16

    CAS  PubMed  Google Scholar 

  • Toepfl S (2006) Pulsed Electric Fields (PEF) for permeabilization of cell membranes in food- and bioprocessing: applications, process and equipment design and cost analysis. PhD thesis. von der Fakultät III Prozesswissenschaften der Technischen Universität Berlin, Germany

    Google Scholar 

  • Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V (2014) Chapter 6 – Overview of pulsed electric fields processing for food. In: Sun D-W (ed) Emerging technologies for food processing (second edition), 2nd edn. Academic Press, San Diego, pp 93–114

    Google Scholar 

  • Varzakas TH, Leach GC, Israilides CJ, Arapoglou D (2005) Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzym Microb Technol 37:29–41

    CAS  Google Scholar 

  • Vicaş SI, Bandici L, Teuşdea AC, Turcin V, Popa D, Bandici GE (2017) The bioactive compounds, antioxidant capacity, and color intensity in must and wines derived from grapes processed by pulsed electric field [Compuestos bioactivos, capacidad antioxidante e intensidad de color en mosto y vinos derivados de uvas sometidas a tratamiento de campos eléctricos pulsados]. CYTA J Food 15:553–562. https://doi.org/10.1080/19476337.2017.1317667

    Article  CAS  Google Scholar 

  • Virkutyte J (2017) Aerobic treatment of effluents from pulp and paper industries. In: Current developments in biotechnology and bioengineering. Elsevier, pp 103–130

    Google Scholar 

  • Vorobiev EI, Lebovka NI (eds) (2008) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York

    Google Scholar 

  • Vorobiev E, Lebovka N (2010) Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Eng Rev 2:95–108

    CAS  Google Scholar 

  • Vorobiev E, Lebovka N (2013) Enhancing extraction from solid foods and biosuspensions by electrical pulsed energy (pulsed electric field, pulsed ohmic heating and high voltage electrical discharge). In: Yanniotis S, Taoukis P, Stoforos NG, Karathanos VT (eds) Advances in food process engineering research and applications. Springer, pp 415–428

    Google Scholar 

  • Vorobiev E, Lebovka N (2016a) Selective Extraction of Molecules from Biomaterials by Pulsed Electric Field Treatment. In: Miklavcic D (ed) Handbook of Electroporation. Springer, Cham, pp 1–16

    Google Scholar 

  • Vorobiev E, Lebovka N (2016b) Applications of pulsed electric energy for biomass pretreatment in biorefinery. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, pp 151–168

    Google Scholar 

  • Vorobiev E, Lebovka N (2019) Pulsed Electric Field in green processing and preservation of food products. In: Chemat F, Vorobiev E (eds) Green Food Processing techniques. Preservation, transformation, and extraction. Academic Press, London, pp 403–430

    Google Scholar 

  • Vorobiev E, Lebovka N (2020) Processing of foods and biomass feedstocks by pulsed electric energy. Springer, Switzerland AG

    Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    CAS  Google Scholar 

  • Wiktor A, Śledź M, Nowacka M, Chudoba T, Witrowa-Rajchert D (2014) Pulsed electric field pretreatment for osmotic dehydration of apple tissue: experimental and mathematical modeling studies. Dry Technol 32:408–417. https://doi.org/10.1080/07373937.2013.834926

    Article  CAS  Google Scholar 

  • Winterhalter M, Helfrich W (1987) Effect of voltage on pores in membranes. Phys Rev A 36:5874

    CAS  Google Scholar 

  • Wouters PC, Smelt JPPM (1997) Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnol 11:193–229. https://doi.org/10.1080/08905439709549933

    Article  Google Scholar 

  • Xue D, Farid MM (2015) Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innov Food Sci Emerg Technol 29:178–186

    CAS  Google Scholar 

  • Yin YG, Cui YR, Wang T (2008) Study on extraction of polysaccharide from Inonotus obliquus by high intensity pulsed electric fields. Trans Chinese Soc Agric Mach 39:89–92

    Google Scholar 

  • Zagorul’ko AY (1958) Obtaining of the diffusion juice with the help of electroplasmolysis. PhD thesis (Candidate of technical sciences), All-USSR Central Research Institute of Sugar Industry, Kiev, Ukraine (in Russian)

    Google Scholar 

  • Zhang T-H, Wang S-J, Liu D-R, Yuan Y, Yu Y-L, Yin Y-G (2011) Optimization of exopolysaccharide extraction process from Tibetan spiritual mushroom by pulsed electric fields. Jilin Daxue Xuebao (Gongxueban)/(J Jilin Univ Eng Technol Ed) 41:882–886

    CAS  Google Scholar 

  • Zhu Z, Bals O, Grimi N, Vorobiev E (2012) Pilot scale inulin extraction from chicory roots assisted by pulsed electric fields. Int J Food Sci Technol 47:1361–1368

    CAS  Google Scholar 

  • Zhu Z, Luo J, Ding L, Bals O, Jaffrin MY, Vorobiev E (2013) Chicory juice clarification by membrane filtration using rotating disk module. J Food Eng 115:264–271

    CAS  Google Scholar 

  • Zhu Z, Mhemdi H, Ding L, Bals O, Jaffrin MY, Grimi N, Vorobiev E (2015) Dead-end dynamic ultrafiltration of juice expressed from electroporated sugar beets. Food Bioprocess Technol 8:615–622

    CAS  Google Scholar 

  • Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. In: Reviews of physiology, biochemistry and pharmacology, vol 105. Springer, pp 175–256

    Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann U, Pilwat G, Beckers F, Riemann F (1976a) Effects of external electrical fields on cell membranes. Bioelectrochem Bioenerg 3:58–83

    CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Holzapfel C, Rosenheck K (1976b) Electrical hemolysis of human and bovine red blood cells. J Membr Biol 30:135–152

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Riemann F, Pilwat G (1976c) Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown. Biochim Biophys Acta (BBA) Biomembranes 436:460–474

    CAS  Google Scholar 

  • Zimmermann U, Vienken J, Scheurich P (1980) Electric field induced fusion of biological cells. Eur Biophys J 6(86)

    Google Scholar 

  • Zogzas NP, Maroulis ZB (1996) Effective moisture diffusivity estimation from drying data. A comparison between various methods of analysis. Dry Technol 14:1543–1573

    CAS  Google Scholar 

  • Zudans I, Agarwal A, Orwar O, Weber SG (2007) Numerical calculations of single-cell electroporation with an electrolyte-filled capillary. Biophys J 92:3696–3705

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vorobiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N.I. (2022). Cell Membrane Permeabilization by Pulsed Electric Fields for Efficient Extraction of Intercellular Components from Foods. In: Raso, J., Heinz, V., Alvarez, I., Toepfl, S. (eds) Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70586-2_6

Download citation

Publish with us

Policies and ethics