Skip to main content
Log in

Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An ultrasound-negative pressure cavitation extraction method was developed to remarkably improve the recovery efficiency of paclitaxel from Taxus chinensis. The paclitaxel yield was 94–100% through ultrasound-negative pressure cavitation extraction with an extraction time of 3 to 8 min. In particular, most paclitaxel could be recovered within 3 min of extraction at ultrasonic power of 380 W/negative pressure of −260 mmHg. Observation of the biomass surface with SEM before and after extraction showed that as the ultrasonic power and negative pressure increased, the surface was more disrupted. In addition, a pseudo-second order model was suitable for the kinetic analysis, and intraparticle diffusion played a dominant role in the overall extraction rate according to the intraparticle diffusion model. As the ultrasonic power and negative pressure increased, the extraction rate constant (6.8816–11.6105 mL/mg·min), the effective diffusion coefficient (1.550×10−12–11.528×10−12 m2/s), and the mass transfer coefficient (2.222×10−7–5.149×10−7 m/s) increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Zhu and L. Chen, Cell. Mol. Biol. Lett., 24, 40 (2019).

    Article  Google Scholar 

  2. M. Caillaud, N. H. Patel, A. White, M. Wood, K. M. Contreras, W. Toma, Y. Alkhlaif, J. L. Roberts, T. H. Tran, A. B. Jackson, J. Poklis, D. A. Gewirtz and M. I. Damaj, Brain Behav. Immun., 93, 172 (2021).

    Article  CAS  Google Scholar 

  3. Y. S. Jang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 529 (2019).

    Article  CAS  Google Scholar 

  4. M. Ghorbani, F. Pourjafar, M. Saffari and Y. Asgari, Meta Gene, 26, 100800 (2020).

    Article  Google Scholar 

  5. T. Sun, Y. Liu, M. Li, H. Yu and H. Piao, Mol. Cell. Probes, 53, 101602 (2020).

    Article  CAS  Google Scholar 

  6. B. Modarresi-Darreh, K. Kamali, S. M. Kalantar, H. Dehghanizadeh and B. Aflatoonian, Eurasia J. Biosci., 12, 413 (2018).

    CAS  Google Scholar 

  7. S. H. Pyo, H. J. Choi and B. H. Han, J. Chromatogr. A, 1123, 15 (2006).

    Article  CAS  Google Scholar 

  8. H. J. Kang and J. H. Kim, Process Biochem., 99, 316 (2020).

    Article  CAS  Google Scholar 

  9. H. W. Seo and J. H. Kim, Process Biochem., 87, 238 (2019).

    Article  CAS  Google Scholar 

  10. J. H. Kim, C. B. Lim, I. S. Kang, S. S. Hong and H. S. Lee, Korean J. Biotechnol. Bioeng., 15, 337 (2000).

    Google Scholar 

  11. G. J. Kim and J. H. Kim, Korean J. Chem. Eng., 32, 1023 (2015).

    Article  CAS  Google Scholar 

  12. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 25, 86 (2020).

    Article  CAS  Google Scholar 

  13. H. J. Kang and J. H. Kim, Korean J. Chem. Eng., 36, 1965 (2019).

    Article  CAS  Google Scholar 

  14. K. W. Yoo and J. H. Kim, Biotechnol. Bioprocess Eng., 23, 532 (2018).

    Article  CAS  Google Scholar 

  15. J. H. Kim, Korean Chem. Eng. Res., 58, 273 (2020).

    CAS  Google Scholar 

  16. G. Chen, F. Bu, X. Chen, C. Li, S. Wang and J. Kan, Int. J. Biol. Macromol., 112, 656 (2018).

    Article  CAS  Google Scholar 

  17. M. Rakshit and P. P. Srivastav, J. Food Process. Preserv., 45, e15078 (2020).

    Google Scholar 

  18. W. Tang, B. Wang, M. Wang and M. Wang, J. Appl. Res. Med. Aromat. Plants, 25, 100331 (2021).

    Google Scholar 

  19. R. Upadhyay, G. Nachiappan and H. N. Mishra, Food Sci. Biotechnol., 24, 1951 (2015).

    Article  CAS  Google Scholar 

  20. F. Filianty, IOP Conf. Ser.: Earth Environ. Sci., 443, 012104 (2020).

    Article  Google Scholar 

  21. S. Roohinejad, M. Koubaa, F. J. Barba, R. Greiner, V. Orlien and N. I. Lebovka, Trends Food Sci. Technol., 52, 98 (2016).

    Article  CAS  Google Scholar 

  22. A. C. Soria and M. Villamiel, Trends Food Sci. Technol., 21, 323 (2010).

    Article  CAS  Google Scholar 

  23. Z. Tan, Q. Li, C. Wang, W. Zhou, Y. Yang, H. Wang, Y. Yi and F. Li, Molecules, 22, 1483 (2017).

    Article  Google Scholar 

  24. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 513 (2019).

    Article  CAS  Google Scholar 

  25. S. Langergren and B. K. Svenska, Veter. Hand., 24, 1 (1898).

    Google Scholar 

  26. L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte and H. Fauduet, Sep. Purif. Technol., 54, 253 (2007).

    Article  CAS  Google Scholar 

  27. Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet and C. Porte, Sep. Purif. Technol., 45, 169 (2005).

    Article  CAS  Google Scholar 

  28. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963).

    Article  Google Scholar 

  29. R. Y. Krishnan and K. S. Rajan, Sep. Purif. Technol., 157, 169 (2016).

    Article  Google Scholar 

  30. R. Y. Krishnan, M. N. Chandran, V. Vadivel and K. S. Rajan, Sep. Purif. Technol., 170, 224 (2016).

    Article  Google Scholar 

  31. L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte and H. Fauduet, Sep. Purif. Technol., 76, 126 (2010).

    Article  CAS  Google Scholar 

  32. G. Wang, Q. Cui, L.-J. Yin, Y. Li, M.-Z. Gao, Y. Meng, J. Li and S.-D. Zhang, Sep. Purif. Technol., 244, 115805 (2020).

    Article  CAS  Google Scholar 

  33. D. Panda and S. Manickam, Appli. Sci., 9, 766 (2019).

    Article  CAS  Google Scholar 

  34. S. Li, A. Wang, L. Liu, G. Tian and F. Xu, Food Sci. Biotechnol., 28, 759 (2019).

    Article  CAS  Google Scholar 

  35. T. Wang, N. Guo, S.-X. Wang, P. Kou, C.-J. Zhao and Y.-J. Fu, Food Bioprod. Process., 108, 69 (2018).

    Article  Google Scholar 

  36. M. Dular, T. Požar, J. Zevnik and R. Petkovšek, Wear, 418-419, 13 (2019).

    Article  Google Scholar 

  37. D. Kavitha and C. Namasivayam, Bioresour. Technol., 98, 14 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, HS., Kim, HG. & Kim, JH. Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 39, 398–407 (2022). https://doi.org/10.1007/s11814-021-1028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1028-5

Keywords

Navigation