Skip to main content

Advertisement

Log in

Green extraction of biomolecules from algae using subcritical and supercritical fluids

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomolecules present in algae, such as carbohydrates, proteins, pigments, and lipids, have wide applications as ingredients in different cosmeceutical, pharmaceutical, and nutraceutical products. Research efforts have been made to establish efficient extraction processes of the high-value bioactive compounds from algae to overcome the limitations of traditional extraction processes. Supercritical fluid extraction (SFE) and subcritical water extraction (SWE) are identified as economically sustainable, promising green extraction technologies which have wide applicability in the extraction of valuable bioactive molecules from natural resources including micro- and macroalgae. This review presents a detailed discussion for the extraction of biomolecules from the algae using the SFE and SWE techniques. In addition, the improvement of these technologies has been discussed considering the extraction of different bioactive and valuable compounds from different algae strains. Optimized process conditions and choice of solvents in the SFE and SWE processes depend on the biomass composition. Research endeavors for the enhancement of extraction yield of the different biomolecules are addressed. The integrated extraction process by combining the SFE and SWE techniques appears to be an effective method for extracting different valuable bioactive molecules. This review also discussed the perspective and challenge for using SFE and SWE processes on algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chemat F, et al. (2019) Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 24(16)

  2. Gallego R, Bueno M, Herrero M (2019) Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae–an update. TrAC, Trends Anal Chem 116:198–213

    Article  Google Scholar 

  3. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13(7):8615–8627

    Article  Google Scholar 

  4. Budisa N, Schulze-Makuch D (2014) Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life 4(3):331–340

    Article  Google Scholar 

  5. Herrero M et al (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217(16):2495–2511

    Article  Google Scholar 

  6. Barbosa HM et al (2014) Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. J Supercrit Fluid 85:165–172

    Article  Google Scholar 

  7. Allada SR (1984) Solubility parameters of supercritical fluids. Ind Eng Chem Process Des Dev 23(2):344–348

    Article  Google Scholar 

  8. del Pilar Sánchez-Camargo A et al (2017) Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Green Extraction Techniques: Principles, Advances and Applications 76:27

    Google Scholar 

  9. Li Z, Smith KH, Stevens GW (2016) The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review. Chin J Chem Eng 24(2):215–220

    Article  Google Scholar 

  10. Sánchez-Camargo A et al (2016) Application of Hansen solubility approach for the subcritical and supercritical selective extraction of phlorotannins from Cystoseira abies-marina. RSC Adv 6(97):94884–94895

    Article  Google Scholar 

  11. Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14(6):581–591

    Article  Google Scholar 

  12. Santana A, Jesus S, Larrayoz M (2012) Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng 42:1755–1761

    Article  Google Scholar 

  13. Halim R et al (2011) Oil extraction from microalgae for biodiesel production. Biores Technol 102(1):178–185

    Article  Google Scholar 

  14. Quitain AT et al (2013) Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J Agric Food Chem 61(24):5792–5797

    Article  Google Scholar 

  15. Abdelmoez W, Nakahasi T, Yoshida H (2007) Amino acid transformation and decomposition in saturated subcritical water conditions. Ind Eng Chem Res 46(16):5286–5294

    Article  Google Scholar 

  16. Alghoul ZM, Ogden PB, Dorsey JG (2017) Characterization of the polarity of subcritical water. J Chromatogr A 1486:42–49

    Article  Google Scholar 

  17. Galamba N et al (2019) Solubility of polar and nonpolar aromatic molecules in subcritical water: the role of the dielectric constant. J Chem Theory Comput 15(11):6277–6293

    Article  Google Scholar 

  18. Wiboonsirikul J, Adachi S (2008) Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Sci Technol Res 14(4):319–319

    Article  Google Scholar 

  19. Plugatyr A, Svishchev IM (2011) Molecular diffusivity of phenol in sub- and supercritical water: application of the split-flow Taylor dispersion technique. J Phys Chem B 115(11):2555–2562

    Article  Google Scholar 

  20. Sasaki M et al (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39(8):2883–2890

    Article  Google Scholar 

  21. Getachew AT, Chun BS (2017) Molecular modification of native coffee polysaccharide using subcritical water treatment: structural characterization, antioxidant, and DNA protecting activities. Int J Biol Macromol 99:555–562

    Article  Google Scholar 

  22. Zakaria SM, Kamal SMM (2016) Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients. Food Engineering Reviews 8(1):23–34

    Article  Google Scholar 

  23. Rodríguez-Meizoso I et al (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51(2):456–463

    Article  Google Scholar 

  24. Santoyo S et al (2010) Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. J Agric Food Chem 58(15):8522–8527

    Article  Google Scholar 

  25. Santoyo S et al (2011) Pressurized liquids as an alternative green process to extract antiviral agents from the edible seaweed Himanthalia elongata. J Appl Phycol 23(5):909–917

    Article  Google Scholar 

  26. Santoyo S et al (2012) Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J Appl Phycol 24(4):731–741

    Article  Google Scholar 

  27. Plaza M et al (2012) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Science and Technology 46(1):245–253

    Article  Google Scholar 

  28. Bueno M et al (2020) Compressed CO2 technologies for the recovery of carotenoid-enriched extracts from Dunaliella salina with potential neuroprotective activity. ACS Sustain Chem Eng 8(30):11413–11423

    Article  Google Scholar 

  29. Crampon C, Boutin O, Badens E (2011) Supercritical carbon dioxide extraction of molecules of interest from microalgae and seaweeds. Ind Eng Chem Res 50(15):8941–8953

    Article  Google Scholar 

  30. Crampon C et al (2013) Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluid 79:337–344

    Article  Google Scholar 

  31. Turner C, King JW, Mathiasson L (2001) Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J Chromatogr A 936(1–2):215–237

    Article  Google Scholar 

  32. Castro-Puyana M et al (2013) Subcritical water extraction of bioactive components from algae. Functional ingredients from algae for foods and nutraceuticals. Elsevier, pp 534–560

    Chapter  Google Scholar 

  33. Plaza M et al (2010) Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res Int 43(4):1123–1129

    Article  Google Scholar 

  34. Herrero M et al (2005) Capillary electrophoresis-mass spectrometry of Spirulina platensis proteins obtained by pressurized liquid extraction. Electrophoresis 26(21):4215–4224

    Article  Google Scholar 

  35. Hawthorne SB, King JW (2018) Principles and practice of analytical SFE. Practical Supercritical Fluid Chromatography and Extraction. Routledge, pp 219–282

    Chapter  Google Scholar 

  36. Michalak, I., et al., Supercritical algal extracts: a source of biologically active compounds from nature. Journal of Chemistry, 2015. 2015.

  37. Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113(5):539–547

    Article  Google Scholar 

  38. Aravena, R.I. and J.M. del Valle (2012) Effect of microalgae preconditioning on supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis. in Proceedings of the 10th International Symposium of Supercritical Fluids, San Francisco, CA, USA

  39. Safi C et al (2014) Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J Appl Phycol 26(4):1711–1718

    Article  Google Scholar 

  40. Fujii K (2012) Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga. Food Bioprod Process 90(4):762–766

    Article  Google Scholar 

  41. Men’shova, R., et al., Effect of pretreatment conditions of brown algae by supercritical fluids on yield and structural characteristics of fucoidans. Chemistry of Natural Compounds, 2013. 48(6): p. 923–926.

  42. Patil PD et al (2018) Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J Supercrit Fluid 135:60–68

    Article  Google Scholar 

  43. Cheng C-H et al (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Biores Technol 102(21):10151–10153

    Article  Google Scholar 

  44. Dejoye C et al (2011) Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12:9332–9341

    Article  Google Scholar 

  45. Balboa EM, Moure A, Domínguez H (2015) Valorization of Sargassum muticum biomass according to the biorefinery concept. Mar Drugs 13(6):3745–3760

    Article  Google Scholar 

  46. Pan JL et al (2012) Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Eng Life Sci 12(6):638–647

    Article  Google Scholar 

  47. Ibañez E et al (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. Marine bioactive compounds. Springer, pp 55–98

    Chapter  Google Scholar 

  48. Khaw K-Y et al (2017) Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules 22(7):1186

    Article  MathSciNet  Google Scholar 

  49. Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19(1):31–39

    Article  Google Scholar 

  50. Yen H-W et al (2015) Supercritical fluid extraction of valuable compounds from microalgal biomass. Biores Technol 184:291–296

    Article  Google Scholar 

  51. Vandamme EJ and Revuelta JL (2016) Vitamins, biopigments, antioxidants and related compounds: a historical, physiological and (bio) technological perspective. Industrial biotechnology of vitamins, biopigments, and antioxidants

  52. Zhang J et al (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5(3):413–425

    Article  Google Scholar 

  53. Liau B-C et al (2010) Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. The Journal of Supercritical Fluids 55(1):169–175

    Article  Google Scholar 

  54. Yen H-W, Chiang W-C, Sun C-H (2012) Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J Taiwan Inst Chem Eng 43(1):53–57

    Article  Google Scholar 

  55. Cardoso L et al (2012) Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am J Anal Chem 3(12A):877–883

    Article  Google Scholar 

  56. Abrahamsson V, Rodriguez-Meizoso I, Turner C (2012) Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J Chromatogr A 1250:63–68

    Article  Google Scholar 

  57. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  Google Scholar 

  58. Atabani AE et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16(4):2070–2093

    Article  Google Scholar 

  59. Solana M, Rizza C, Bertucco A (2014) Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. The Journal of Supercritical Fluids 92:311–318

    Article  Google Scholar 

  60. Li Y et al (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13(1):1–9

    Article  Google Scholar 

  61. Sarkar S et al (2020) Priority-based multiple products from microalgae: Review on techniques and strategies. Crit Rev Biotechnol 40(5):590–607

    Article  Google Scholar 

  62. Soh L, Zimmerman J (2011) Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem 13(6):1422–1429

    Article  Google Scholar 

  63. Zhang, H., et al., Fucoxanthin: a promising medicinal and nutritional ingredient. Evidence-based complementary and alternative medicine, 2015. 2015.

  64. Kanda H et al (2014) Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Mar Drugs 12(5):2383–2396

    Article  Google Scholar 

  65. Kim SM et al (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166(7):1843–1855

    Article  Google Scholar 

  66. Quitain AT et al (2013) Microwave–hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Ind Eng Chem Res 52(23):7940–7946

    Article  Google Scholar 

  67. Conde E, Moure A, Domínguez H (2015) Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. J Appl Phycol 27(2):957–964

    Article  Google Scholar 

  68. Klejdus B et al (2010) Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J Chromatogr A 1217(51):7956–7965

    Article  Google Scholar 

  69. Wahyudiono W, Machmudah S, Goto M (2013) Utilization of sub and supercritical water reactions in resource recovery of biomass wastes. Engineering Journal 17(1):1–12

    Article  Google Scholar 

  70. Plaza M, Turner C (2015) Pressurized hot water extraction of bioactives. TrAC, Trends Anal Chem 71:39–54

    Article  Google Scholar 

  71. Cheng Y et al (2021) Subcritical water extraction of natural products. Molecules 26(13):4004

    Article  Google Scholar 

  72. Zhang C et al (2016) Enhancing the performance of co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18(8):2542–2553

    Article  Google Scholar 

  73. Lee W-K, Namasivayam P, Ho C-L (2014) Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib Malaysia. J Appl Phycol 26(4):1791–1799

    Article  Google Scholar 

  74. Machmudah S et al (2017) Sub-and supercritical fluids extraction of phytochemical compounds from Eucheuma cottonii and Gracilaria sp. Chem Eng Trans 56:1291–1296

    Google Scholar 

  75. Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26(2):901–907

    Article  Google Scholar 

  76. Alvarez-Rivera G et al (2020) Chapter 13 - Pressurized liquid extraction. Liquid-phase extraction. Elsevier, pp 375–398

    Chapter  Google Scholar 

  77. Picó Y (2012) 3.28 - Recent advances in sample preparation for pesticide analysis, in Comprehensive sampling and sample preparation, J. Pawliszyn, Editor, Academic Press: Oxford. p. 569–590

  78. de Jesus Raposo, M.F., A.M.M.B. de Morais, and R.M.S.C. de Morais, Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life sciences, 2014. 101(1–2): p. 56–63.

  79. Awaluddin, S., et al., Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris. BioMed research international, 2016. 2016.

  80. Sarkar S, et al. (2019) Integrated approach for the sustainable extraction of carbohydrates and proteins from microalgae, in Sustainable downstream processing of microalgae for industrial application, CRC Press. p. 201-227

  81. Jönsson M et al (2020) Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules 25(4):930

    Article  Google Scholar 

  82. Tsubaki S, et al. (2016) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food chemistry. 210: p. 311–316

  83. Alboofetileh M et al (2019) Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int J Biol Macromol 128:244–253

    Article  Google Scholar 

  84. Ahmed ABA et al (2014) Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. Adv Food Nutr Res 73:197–220

    Article  Google Scholar 

  85. Meillisa A, Woo H-C, Chun B-S (2015) Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 171:70–77

    Article  Google Scholar 

  86. Yun EJ et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Biores Technol 199:311–318

    Article  Google Scholar 

  87. Din SS et al (2019) Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method. J Oceanol Limnol 37(3):871–880

    Article  Google Scholar 

  88. Li Y-X et al (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46(12):2219–2224

    Article  Google Scholar 

  89. Wang T et al (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci Technol 43(9):1387–1393

    Article  Google Scholar 

  90. López A et al (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125(3):1104–1109

    Article  Google Scholar 

  91. Plaza M et al (2010) Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res Int 43(10):2341–2348

    Article  Google Scholar 

  92. Reddy HK et al (2014) Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 133:73–81

    Article  Google Scholar 

  93. Thiruvenkadam S, et al. (2018) Subcritical water extraction of Chlorella pyrenoidosa: Optimization through response surface methodology. BioMed research international, 2018

  94. Zainan NH, et al. (2019) Biochemical analysis and potential applications of aqueous and solid products generated from subcritical water extraction of microalgae Chlorella pyrenoidosa biomass. J Appl Phycol: p. 1–16

  95. Mendiola JA, et al. (2007) Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. Eur Food Res Technol 224(4):505–510

  96. Cheung PC (1999) Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem 65(3):399–403

    Article  Google Scholar 

  97. Macías-Sánchez M et al (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123(3):928–935

    Article  Google Scholar 

  98. Herrero M et al (2013) Compressed fluids for the extraction of bioactive compounds. TrAC, Trends Anal Chem 43:67–83

    Article  Google Scholar 

  99. Gilbert-López B et al (2017) Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res 24:111–121

    Article  Google Scholar 

  100. Sánchez‐Camargo AdP, et al. (2018) Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis 39(15):1875–1883

  101. Reyes FA et al (2014) Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J Supercrit Fluid 92:75–83

    Article  Google Scholar 

  102. Herrero M et al (2015) Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC, Trends Anal Chem 71:26–38

    Article  Google Scholar 

  103. Koo SY et al (2012) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J Appl Phycol 24(4):725–730

    Article  Google Scholar 

  104. Gilbert-López B et al (2015) Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chem 17(9):4599–4609

    Article  Google Scholar 

  105. Rodríguez-Meizoso I et al (2012) Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. J Supercrit Fluid 72:205–212

    Article  Google Scholar 

  106. Righi S et al (2011) Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem 13(2):367–375

    Article  Google Scholar 

  107. Cardenas-Toro FP et al (2015) Pressurized liquid extraction and low-pressure solvent extraction of carotenoids from pressed palm fiber: experimental and economical evaluation. Food Bioprod Process 94:90–100

    Article  Google Scholar 

  108. Wang, H.-C., et al., Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol. Bioresource technology, 2015. 189: p. 162–168.

  109. Sánchez-Camargo A et al (2016) Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity. J Supercrit Fluid 107:581–589

    Article  Google Scholar 

  110. Vardakas A (2020) A new process for enzyme-assisted subcritical water extraction of rice husk polyphenols. University of Food Technologies: Plovdiv, Bulgaria. p. 76.

  111. Palavra A et al (2011) Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluid 60:21–27

    Article  Google Scholar 

  112. Tang S et al (2011) Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluid 57(1):44–49

    Article  Google Scholar 

  113. Nobre BP, et al. (2013) A biorefinery from Nannochloropsis sp. microalga–extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technol 135:128–136

  114. Golmakani M-T et al (2012) Expanded ethanol with CO2 and pressurized ethyl lactate to obtain fractions enriched in γ-linolenic acid from Arthrospira platensis (Spirulina). J Supercrit Fluid 62:109–115

    Article  Google Scholar 

  115. Billakanti JM, et al. (2012) Extraction of fucoxanthin from Undaria pinnatifida using enzymatic pre-treatment followed by DME and EtOH co-solvent extraction. in 10th International Symposium on Supercritical Fluids. CASSS: Emeryville, CA, USA

  116. Pérez-López P et al (2014) Comparative environmental assessment of valorization strategies of the invasive macroalgae Sargassum muticum. Biores Technol 161:137–148

    Article  Google Scholar 

  117. Zheng J et al (2012) Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Mar Drugs 10(12):2634–2647

    Article  Google Scholar 

  118. Rodriguez-Jasso RM et al (2014) Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68(2):203–209

    Article  Google Scholar 

  119. González-López N, Moure A, Domínguez H (2012) Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol 24(6):1569–1578

    Article  Google Scholar 

  120. Saravana PS et al (2016) Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res 13:246–254

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Project Number: CRG/2018/002479).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalyan Gayen or Tridib Kumar Bhowmick.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Gayen, K. & Bhowmick, T.K. Green extraction of biomolecules from algae using subcritical and supercritical fluids. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02309-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02309-3

Keywords

Navigation