Skip to main content
Log in

Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., & Chaiyaso, T. (2018). An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresource Technology, 256, 399–407.

    Article  CAS  Google Scholar 

  2. Chen, X., Li, Z., Zhang, L., Wang, H., Qiu, C., Fan, X., & Sun, S. (2021). Preparation of a novel lignin-based film with high solid content and its physicochemical characteristics. Industrial Crops and Products, 164, 113396.

    Article  CAS  Google Scholar 

  3. Li, M., Zhang, Q., Luo, B., Chen, C., Wang, S., & Min, D. (2020). Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural. Industrial Crops and Products, 145, 111920.

    Article  CAS  Google Scholar 

  4. Cai, X., Hu, C. H., Wang, J., Zeng, X. H., & Zheng, Y. G. (2021). Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Bioresource Technol, 326, 124768.

    Article  CAS  Google Scholar 

  5. Arumugam, N., Boobalan, T., Pugazhendhi, A., Arun, A., & Kavitha, T. (2021). Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica. Bioresource Technol, 340, 125677.

    Article  Google Scholar 

  6. Liao, H., Li, X., Lian, Z., Xu, Y., & Zhang, J. (2021). Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob. Bioresource Technol, 342, 125979.

    Article  CAS  Google Scholar 

  7. Ni, J., Di, J., Ma, C., & He, Y. (2021). Valorisation of corncob into furfuryl alcohol and furoic acid via chemoenzymatic cascade catalysis. Bioresources and Bioprocessing, 8, 113.

  8. Ríos-González, L. J., Medina-Morales, M. A., Rodríguez-De La Garza, J. A., Romero-Galarza, A., Medina, D. D., & Morales-Martínez, T. K. (2021). Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis. Bioresource Technol, 319, 124099.

    Article  Google Scholar 

  9. Wei, W., Wang, B., Wang, X., Ling, R., & Jin, Y. (2021). Comparison of acid and alkali catalyzed ethylene glycol organosolv pretreatment for sugar production from bagasse. Bioresource Technol, 320, 124293.

    Article  CAS  Google Scholar 

  10. Himmel, M. E., Ding, S., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  CAS  Google Scholar 

  11. Scopel, E., & Rezende, C. A. (2021). Biorefinery on-demand: Modulating pretreatments to recover lignin, hemicellulose, and extractives as co-products during ethanol production. Industrial Crops and Products, 163, 113336.

    Article  CAS  Google Scholar 

  12. Jayapal, N., Samanta, A. K., Kolte, A. P., Senani, S., Sridhar, M., Suresh, K. P., & Sampath, K. T. (2013). Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Industrial Crops and Products, 42, 14–24.

    Article  CAS  Google Scholar 

  13. Xue, X., Ma, C., Di, J., Huo, X., & He, Y. (2018). One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technol, 268, 292–299.

    Article  CAS  Google Scholar 

  14. Lian, Z., Wang, Y., Luo, J., Lai, C., Yong, Q., & Yu, S. (2020). An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan. Bioresource Technol, 314, 123685.

    Article  CAS  Google Scholar 

  15. Mhetras, N., Mapre, V., & Gokhale, D. (2019). Xylooligosaccharides (XOS) as emerging prebiotics: Its production from lignocellulosic material. Advances in Microbiology, 09(01), 14–20.

    Article  CAS  Google Scholar 

  16. Santibáez, L., Henríquez, C., Corro-Tejeda, R., Bernal, S., Armijo, B., & Salazar, O. (2020). Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydrate Polymers, 251, 117118.

  17. Singh, R. D., Nadar, C. G., Muir, J., & Arora, A. (2019). Green and clean process to obtain low degree of polymerisation xylooligosaccharides from almond shell. Journal Of Cleaner Production, 241, 118237.

    Article  CAS  Google Scholar 

  18. Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., & Yong, Q. (2019). A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnology For Biofuels, 12(1), 189.

    Article  Google Scholar 

  19. Wu, M., Gong, L., Ma, C., & He, Y. (2021). Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technol, 340, 125695.

    Article  CAS  Google Scholar 

  20. Ling, Z., Guo, Z., Huang, C., Yao, L., & Xu, F. (2020). Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Bioresource Technology, 305, 123025.

    Article  CAS  Google Scholar 

  21. Cesaro, A., Conte, A., Carrère, H., Trably, E., Paillet, F., & Belgiorno, V. (2020). Formic acid pretreatment for enhanced production of bioenergy and biochemicals from organic solid waste. Biomass and Bioenergy, 133, 105455.

    Article  CAS  Google Scholar 

  22. Yang, Z., Wu, D., Chen, C., Cheong, K., Deng, Y., Chen, L., & Li, S. (2016). Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Separation and Purification Technology, 171, 151–156.

    Article  CAS  Google Scholar 

  23. Zhou, X., & Xu, Y. (2019). Eco-friendly consolidated process for co-production of xylooligosaccharides and fermentable sugars using self-providing xylonic acid as key pretreatment catalyst. Biotechnology for Biofuels, 12, 272.

    Article  CAS  Google Scholar 

  24. Forsan, C. F., Paz Cedeño, F. R., Masarin, F., & Brienzo, M. (2021). Xylooligosaccharides production by optimized autohydrolysis, sulfuric and acetic acid hydrolysis for minimum sugar degradation production. Bioactive Carbohydrates and Dietary Fibre, 26, 100268.

    Article  CAS  Google Scholar 

  25. Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41(9), 1913–1923.

    Article  CAS  Google Scholar 

  26. Guo, J., Zhao, J., Nawaz, A., Haq, I. U., Chang, W., & Xu, Y. (2021). In situ chemical locking of acetates during xylo-oligosaccharide preparation by lignocellulose acidolysis. Applied Biochemistry and Biotechnology, 193(8), 2602–2615.

    Article  CAS  Google Scholar 

  27. Han, J., Cao, R., Zhou, X., & Xu, Y. (2020). An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. Bioresource Technology, 307, 123200.

    Article  CAS  Google Scholar 

  28. Zhang, H., Xu, Y., & Yu, S. (2017). Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 234, 343–349.

    Article  CAS  Google Scholar 

  29. Bian, H., Luo, J., Wang, R., Xuelian, Z., & Dai, H. (2019). Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustainable Chemistry & Engineering, 7(24), 20022–20031.

    Article  CAS  Google Scholar 

  30. Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., & Sun, R. C. (2014). Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chemistry, 156, 7–13.

    Article  CAS  Google Scholar 

  31. Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D., & Templeton, D. W. (2010). Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural and Food Chemistry, 58(16), 9043–9053.

    Article  CAS  Google Scholar 

  32. Xu, Y., Fan, L., Wang, X., Yong, Q., & Yu, S. Y. (2013). Simultaneous separation and quantification of linear xylo- and cello-oligosaccharides mixtures in lignocellulosics processing products on high-performance anion-exchange chromatography coupled with pulsed amperometric detection. Bioresources, 8(3), 3247–3259.

    Google Scholar 

  33. Nath, A., & Chattopadhyay, P. K. (2007). Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surface methodology. Journal Of Food Engineering, 80(4), 1282–1292.

    Article  Google Scholar 

  34. Yang, B., & Wyman, C. E. (2010). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts & Biorefining, 2(1), 26–40.

    Article  Google Scholar 

  35. Martins, L. H. D. S., Rabelo, S. C., & Costa, A. C. D. (2015). Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresource Technology, 191, 312–321.

    Article  CAS  Google Scholar 

  36. Cheng, M., Kadhum, H. J., Murthy, G. S., Dien, B. S., & Singh, V. (2020). High solids loading biorefinery for the production of cellulosic sugars from bioenergy sorghum. Bioresource Technology, 318, 124051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Advanced Analysis and Testing Center of Nanjing Forestry University.

Funding

The research was supported by the National Natural Science Foundation of China (32171730).

Author information

Authors and Affiliations

Authors

Contributions

Zhina Lian performed the experiments, analyzed the data. Qibo Zhang prepared the draft manuscript. Kankan Jiang and Xin Zhou conceived, designed the study and modified the manuscript. Yong Xu reviewed and edited the manuscript.

Corresponding author

Correspondence to Xin Zhou.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they consent to participate.

Consent for Publication

The authors declare that they consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Z., Zhang, Q., Xu, Y. et al. Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment. Appl Biochem Biotechnol 194, 4946–4958 (2022). https://doi.org/10.1007/s12010-022-03985-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03985-7

Keywords

Navigation