Skip to main content

Advertisement

Log in

Process Optimization of Lipid Extraction from Microalgae Aphanothece halophytica in Wet and Dry Conditions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Unearthing new sustainable and economically viable sources for biofuel production which do not affect the environment is a dire need of the hour. Microalgae is one such promising source due to its high lipid content, productivity, and carbon neutrality. Identification of appropriate strain and process optimization decides the biomass productivity, nutrient value, and oil content which are the major factors for commercialization. In the present work, mass cultivation of halophilic Aphanothece halophytica in raceway ponds was optimized by using organic and inorganic nutrients by using design of experiments. Organic flocculant, neem plus was successfully adapted for harvesting the biomass and oil extraction was done with solvent methodology. A maximum lipid yield of 29.3% was obtained on wet basis, when the reaction temperature, reaction time, biomass-to-solvent ratio and mixing intensity were kept at 68 ºC, 190 min, 9:1, and 300 rpm respectively. Similarly, on dry basis, a lipid yield of 27.5% was reported when the reaction temperature, reaction time, biomass-to-solvent ratio and mixing intensity were maintained at 68 ºC, 190 min, 12:1, and 300 rpm respectively. GC–MS analysis of the lipid was done to appropriate the combination of fatty acid for enhancing the biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Technol 2:216–225. https://doi.org/10.1016/j.mset.2018.12.006

    Article  Google Scholar 

  2. Capson-Tojo G, Torres A, Munoz R, Bartacek J, Jeison D (2017) Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N-gaditana for methane production Renew. Energ 105:539–546. https://doi.org/10.1016/j.renene.2016.12.052

    Article  CAS  Google Scholar 

  3. Kings AJ, Raj RE, Miriam LRM, Visvanathan MA (2017) Growth studies on microalgae Euglena sanguinea in various natural eco-friendly composite media to optimize the lipid productivity. Bioresour Technol 244:1349–1357. https://doi.org/10.1016/j.biortech.2017.06.136

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Kang X, Wang Z, Kong X, Li L, Sun Y, Zhu S, Feng S, Luo X, Lv P (2018) Enhancement of the energy yield from microalgae via enzymatic pretreatment and anaerobic codigestion. Energy 164:400–407. https://doi.org/10.1016/j.energy.2018.08.124

    Article  CAS  Google Scholar 

  5. Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123. https://doi.org/10.1016/j.algal.2014.10.008

    Article  Google Scholar 

  6. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  7. Surkatti R, Al-Zuhair S (2018) Effect of cresols treatment by microalgae on the cells composition. J of Water Process Eng 26:250–256. https://doi.org/10.1016/j.jwpe.2018.10.022

    Article  Google Scholar 

  8. Medina AR, Grima EM, Gimenez AG, Gonzalez MJ (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580. https://doi.org/10.1016/S0734-9750(97)00083-9

    Article  CAS  Google Scholar 

  9. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171. https://doi.org/10.1016/j.rser.2013.03.034

    Article  CAS  Google Scholar 

  10. Iverson SJ, Lang SL, Cooper MH (2011) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36(11):1283–1287. https://doi.org/10.1007/s11745-001-0843-0

    Article  Google Scholar 

  11. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/y59-099

    Article  CAS  PubMed  Google Scholar 

  12. Selvakumar P, Sivashanmugam P (2019) Ultrasound assisted oleaginous yeast lipid extraction and garbage lipasecatalyzed transesterification for enhanced biodiesel production. Energy Convers Manag 179:141–151. https://doi.org/10.1016/j.enconman.2018.10.051

    Article  CAS  Google Scholar 

  13. Selvakumar P, Sivashanmugam P (2018) Study on lipid accumulation in novel oleaginous yeast Naganishialiquefaciens NITTS2 utilizing pre-digested municipal waste activated sludge: a low-cost feedstock for biodiesel production. Appl Biochem Biotechnol 186(3):731–749. https://doi.org/10.1007/s12010-018-2777-4

    Article  CAS  PubMed  Google Scholar 

  14. Dejoye C, Vian MA, Lumia G, Bouscarle C, Charton F, Chemat F (2011) Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12:9332–9341. https://doi.org/10.3390/ijms12129332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 1:138–147. https://doi.org/10.1016/j.algal.2016.11.014

    Article  Google Scholar 

  16. Al-Ameri M, Al-Zuhair S (2018) Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochem Eng J 141:217–224. https://doi.org/10.1016/j.bej.2018.10.017

    Article  CAS  Google Scholar 

  17. Dhandayuthapani K, SenthilKumar P, ChiaWY CKW, Karthik V, Selvarangaraj H, Selvakumar P, Sivashanmugam P, LokeShow P (2021) Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy 244:122604. https://doi.org/10.1016/j.energy.2021.122604

    Article  CAS  Google Scholar 

  18. Kavitha S, Gajendran T, Saranya K, Selvakumar P, Manivasagan V (2021) Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy. Renew Energy 172:440–452. https://doi.org/10.1016/j.renene.2021.03.015

    Article  CAS  Google Scholar 

  19. Dhandayuthapani K, Sarumathi V, Selvakumar P, Temesgen T, Asaithambi P, Sivashanmugam P (2021) Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of chlorella sorokiniana NITTS3. Chem Data Coll 31:100641. https://doi.org/10.1016/j.cdc.2020.100641

    Article  CAS  Google Scholar 

  20. Shyam KP, Rajkumar P, Ramya V, Miriam LM (2021) Biorefining polyvinyl alcohol (PVA) by Enterobacter cloacae and its polyhydroxy butyrate (PHB) production ability. Ind Biotechnol 17(2):92–99. https://doi.org/10.1089/ind.2020.0039

    Article  CAS  Google Scholar 

  21. Srinidhi C, Madhusudhan A, Channapattana SV, Gawali SV, Aithal K (2021) RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester. Energy 234:121282. https://doi.org/10.1016/j.energy.2021.121282

    Article  CAS  Google Scholar 

  22. Shyam KP, Rajkumar P, Ramya V, Sivabalan S, Kings AJ, Miriam LM (2021) Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential. Carbohydr Polym Technol Appl 2:100070. https://doi.org/10.1016/j.carpta.2021.100070

    Article  CAS  Google Scholar 

  23. Miriam LRM, Raj RE, Kings AJ, Visvanathan MA (2017) Identification and characterization of a novel biodiesel producing halophilic Aphanothece halophytica and its growth and lipid optimization in various media. Energy Convers Manag 141:93–100. https://doi.org/10.1016/j.enconman.2016.05.041

    Article  CAS  Google Scholar 

  24. Venkatesan R, Karuppiah PS, Arumugam G, Balamuthu K (2019) β-Asarone exhibits antifungal activity by inhibiting ergosterol biosynthesis in Aspergillus niger ATCC 16888. Proc Natl Acad Sci India Sect B Biol Sci 89(1):173–184. https://doi.org/10.1007/s40011-017-0930-4

    Article  CAS  Google Scholar 

  25. Siham D, Djamal Z, Luveshan R, Ismail R, Faizal B (2016) Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour Technol 219:749–752. https://doi.org/10.1016/j.biortech.2016.08.019

    Article  CAS  Google Scholar 

  26. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SH (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sust Energy Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  CAS  Google Scholar 

  27. Chokshi K, Pancha I, Ghosh A, Mishra S (2017) Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour Technol 244:1376–1383. https://doi.org/10.1016/j.biortech.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products: a review. Bioresour Technol 244:1198–1206. https://doi.org/10.1016/j.biortech.2017.05.170

    Article  CAS  PubMed  Google Scholar 

  29. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804. https://doi.org/10.1016/j.biortech.2020.122804

    Article  CAS  PubMed  Google Scholar 

  30. Kumar AV, Agila E, Sivakumar P, Salam Z, Rengasmy R, Ani FN (2014) Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energ Convers Manag 88:936–946. https://doi.org/10.1016/j.enconman.2014.09.019

    Article  CAS  Google Scholar 

  31. Rashid N, Rehman MSW, Sadiq M, Mahmood T, Han JI (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sustain Ener Rev 40:760–778. https://doi.org/10.1016/j.rser.2014.07.104

    Article  CAS  Google Scholar 

  32. Letelier-Gordo CO, Holdt SL, De-Francisci D, Karakashev DB, Angelidaki I (2014) Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Bioresour Technol 167:214–218. https://doi.org/10.1016/j.biortech.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  33. Dharma S, Masjuki HH, Ong HC, Sebayang AH, Silitonga AS, Kusumo F, Mahlia TMI (2016) Optimization of biodiesel production process for mixed Jatropha curcas – Ceiba pentandra biodiesel using response surface methodology. Energ Convers Manag 115:178–190. https://doi.org/10.1016/j.enconman.2016.02.034

    Article  CAS  Google Scholar 

  34. Lakshmikandan M, Murugesan AG, Wang S, Abomohra AEF, Jovita PA, Kiruthiga S (2019) Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J Clean Prod 247:119398. https://doi.org/10.1016/j.jclepro.2019.119398

    Article  CAS  Google Scholar 

  35. Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY (2018) The potential of microalgae in biodiesel production. Renew Sustain Energy Rev 90:336–346. https://doi.org/10.1016/j.rser.2017.07.044

    Article  Google Scholar 

  36. Hosseini NS, Shang H, Scott JA (2018) Optimization of microalgae sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology. Energy 146:47–56. https://doi.org/10.1016/j.energy.2017.08.085

    Article  CAS  Google Scholar 

  37. Kadi H, Fellag H (2001) Modelling of oil extraction from olive foot cake using hexane. Grasas Aceites 52:369–372. https://doi.org/10.3989/gya.2001.v52.i6.346

    Article  CAS  Google Scholar 

  38. Pokoo-Aikins G, Heath A, Mentzer RA, Mannan SM, Rogers WJ, El-Halwagi MM (2010) A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel. J of Loss Prev Process Ind 23:412–420. https://doi.org/10.1016/j.jlp.2010.01.005

    Article  CAS  Google Scholar 

  39. Zhang L, Cheng J, Pei H, Pan JL, Hou Q, Han F (2018) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Ener 115:276–287. https://doi.org/10.1016/j.renene.2017.08.034

    Article  CAS  Google Scholar 

  40. Jesus SSD, Ferreira GF, Moreira LS, Maciel MRW, Filho RM (2019) Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew Ener 43:130–141. https://doi.org/10.1016/j.renene.2019.04.168

    Article  CAS  Google Scholar 

  41. Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122. https://doi.org/10.1016/j.biortech.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  42. Zhou X, Jin W, Wang Q, Guo S, Tu R, Han S, Chen C, Xie G, Qu F, Wang Q (2019) Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater. Renew Ener 151:598–603. https://doi.org/10.1016/j.renene.2019.11.063

    Article  CAS  Google Scholar 

  43. Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556. https://doi.org/10.1023/A:1008811716448

    Article  CAS  Google Scholar 

  44. Rajak U, Nashine P, Verma TN (2018) Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166:1025–1036. https://doi.org/10.1016/j.energy.2018.10.098

    Article  CAS  Google Scholar 

  45. Channapattana SV, Pawar AA, Gawali SV, Hole J (2020) The effect of nickel oxide nano-additives in Azadirachta indica biodiesel diesel blend on engine performance and emission characteristics by varying compression ratio. Environ Prog Sustain Energy 40(2):13514. https://doi.org/10.1016/10.1002/ep.13514

    Article  Google Scholar 

  46. Miriam LRM, Raj RE, Kings AJ, Visvanathan MA (2017) Enhanced FAME production using green catalyst with superior profile from the isolated halophilic Aphanothece halophytica grown in raceway ponds. Energy Convers Manag 151:63–72. https://doi.org/10.1016/j.enconman.2017.08.071

    Article  CAS  Google Scholar 

  47. Srinidhi C, Madhusudhan A, Channapattana SV, Gawali SV (2020) Comparitive investigation of performance and emission features of methanol, ethanol, DEE, and nanopartilces as fuel additives in diesel-biodiesel blends. Heat Transfer 50(29):1–19. https://doi.org/10.1002/htj.21997

    Article  Google Scholar 

  48. Kings AJ, Raj RE, Miriam LRM, Visvanathan MA (2017) Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers Manag 141:224–235. https://doi.org/10.1016/j.enconman.2016.08.018

    Article  CAS  Google Scholar 

  49. Lani NS, Ngadi N, Yahya NNY, Rahman RA (2017) Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J Clean Prod 146:116–124. https://doi.org/10.1016/j.jclepro.2016.06.058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith J. Kings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monisha Miriam, L.R., Kings, A.J., Raj, R.E. et al. Process Optimization of Lipid Extraction from Microalgae Aphanothece halophytica in Wet and Dry Conditions. Bioenerg. Res. 16, 1051–1064 (2023). https://doi.org/10.1007/s12155-022-10464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10464-8

Keywords

Navigation