Skip to main content
Log in

Deep eutectic solvents in the extraction of active compounds from Eucommia Ulmoides Oliv. leaves

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Eucommia ulmoides Oliv. leaves (EULs) are a newly-developing food feedstock in China, containing various active compounds with important biological activities for humans. We evaluated the influence of deep eutectic solvents (DESs) with different hydrogen bond donors (HBD) on the yields of active compounds from EULs. As a result, EULs extracts obtained by DESs had the highest total phenolic content (Choline chloride-Levulinic acid, 73.39 mg GAE/g DW) and total flavonoid content (Choline chloride-Triethylene glycol, 147.29 mg RE/g DW), much higher than the samples obtained by water and 60% ethanol (w/w). In addition, DESs could effectively extract active compounds from EULs such as chlorogenic acid, rutin, geniposidic acid, and kaempferol. A correlation analysis revealed that lower pH increased the yields of total phenolics, chlorogenic acid, and salicylic acid. The polarity range of 49–50 kcal/mol was universally applicable to active compounds of EULs. Moreover, EULs extracts obtained by DESs exhibited excellent antioxidant activity in vitro. According to the multifactor analysis, the effects of HBD on the active compounds and antioxidant activity of EULs extracts were confirmed, and Choline chloride-Triethylene glycol was the most effective solvent for extracting active compounds from EULs. This study demonstrated the correlation between DESs with different HBD and the active compounds of EULs, providing a valid basis for the design and selection of tailor-made DESs to extract active compounds from EULs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. V.B. Call, D.L. Dilcher, The fossil record of Eucommia (Eucommiaceae) in North merica. Am. J. Bot. 84, 798–814 (1997). https://doi.org/10.2307/2445816

    Article  PubMed  CAS  Google Scholar 

  2. M.Q. Zhu, R.C. Sun, Eucommia ulmoides Oliver: a potential feedstock for bioactive products. J. Agric. Food Chem. 66, 5433–5438 (2018). https://doi.org/10.1021/acs.jafc.8b01312

    Article  PubMed  CAS  Google Scholar 

  3. C. Liu, F.F. Guo, J.P. Xiao, J.Y. Wei, L.Y. Tang, H.J. Yang, Research advances in chemical constituents and pharmacological activities of different parts of Eucommia ulmoides. China J. Chin. Materia Medica. 45, 497–512 (2020). https://doi.org/10.19540/j.cnki.cjcmm.20191108.201 (in Chinese)

    Article  CAS  Google Scholar 

  4. Y.F. Xing, D. He, Y. Wang, W. Zeng, C. Zhang, Y. Lu, N. Su, Y.H. Kong, X.H. Xing, Chemical constituents, biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver. Food Sci. Hum. Wellness 8, 177–188 (2019). https://doi.org/10.1016/j.fshw.2019.03.013

    Article  Google Scholar 

  5. C.L. Hsieh, G.C. Yen, Antioxidant actions of Du-zhong (Eucommia ulmoides oliv.) toward oxidative damage in biomolecules. Life Sci. 66, 1387–1400 (2000). https://doi.org/10.1016/S0024-3205(00)00450-1

    Article  PubMed  CAS  Google Scholar 

  6. J.Y. Wang, Y. Yuan, X.J. Chen, S.G. Fu, L. Zhang, Y.L. Hong, S.F. You, Y.Q. Yang, Extract from Eucommia ulmoides Oliv. ameliorates arthritis via regulation of inflammation, synoviocyte proliferation and osteoclastogenesis in vitro and in vivo. J. Ethnopharmacol. 194, 609–616 (2016). https://doi.org/10.1016/j.jep.2016.10.038

    Article  PubMed  CAS  Google Scholar 

  7. C.Y. Kwan, C.X. Chen, T. Deyama, S. Nishibe, Endothelium-dependent vasorelaxant effects of the aqueous extracts of the Eucommia ulmoides Oliv .leaf and bark: implications on their antihypertensive action. Vasc. Pharmacol. 40, 229–235 (2004). https://doi.org/10.1016/j.vph.2003.09.001

    Article  CAS  Google Scholar 

  8. W.Q. Qi, M.Z. Wang, Comparison of chemical composition for Eucommia ulmoides and Eucommia folium. Clin. Res. Pract. 2, 121–122 (2017). https://doi.org/10.19347/j.cnki.2096-1413.201711062 (in Chinese)

    Article  Google Scholar 

  9. X.R. He, J.H. Wang, M.X. Li, D.J. Hao, Y. Yang, C.L. Zhang, R. He, R. Tao, Eucommia ulmoides Oliv. Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 151, 78–92 (2014). https://doi.org/10.1016/j.jep.2013.11.023

    Article  PubMed  Google Scholar 

  10. A.H. Deng, H.Y. Li, P. Xie, Y. Wang, C.W. Peng, L.N. Cheng, Optimization of extraction process of chlorogenic acid in Eucommia ulmoides leaves by response surface methodology. Nonwood For. Res. 36, 125–130 (2018). https://doi.org/10.14067/j.cnki.1003-8981.2018.01.021 (in Chinese)

    Article  Google Scholar 

  11. Q. Lv, M.J. Peng, W.J. Lan, S. Peng, C.W. Zhang, L.J. Zhang, Effect of processing methods on the content of several active ingredients in barks and leaves of Eucommia ulmoides Oliv. Chem. Ind. For. Prod. 32, 1–5 (2012). (in Chinese)

    Google Scholar 

  12. X.X. Zhang, Y.Z. OuYang, X.F. Li, Q. Feng, Optimization on precipitation separation technology of total flavonoids in Eucommia ulmoides by response surface methodology. Appl. Chem. Ind. 44, 6–9 (2015). https://doi.org/10.16581/j.cnki.issn1671-3206.2015.06.018 (in Chinese)

    Article  CAS  Google Scholar 

  13. X.H. Chen, W.G. Yang, Optimization of ultrasonic and enzymatic-assisted extraction of polysaccharides from Eucommia ulmoides Oliver leaves by response surface method. Sci. Technol. Food Ind. 41, 193–199 (2020). https://doi.org/10.13386/j.issn1002-0306.2020020298 (in Chinese)

    Article  CAS  Google Scholar 

  14. L. Wang, C.L. Weller, Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006). https://doi.org/10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  15. B.L. Zheng, Y. Yuan, J.L. Xiang, W.G. Jin, J.B. Johnson, Z.Z. Li, C.Q. Wang, D.L. Luo, Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: optimization, comparison and bioactivities. LWT Food Sci. Technol. 154, 112740 (2022). https://doi.org/10.1016/j.lwt.2021.112740

    Article  CAS  Google Scholar 

  16. M. Xu, L. Ran, N. Chen, X. Fan, D. Ren, L. Yi, Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 297, 124970 (2019). https://doi.org/10.1016/j.foodchem.2019.124970

    Article  PubMed  CAS  Google Scholar 

  17. Y. Dai, E. Rozema, R. Verpoorte, Y.H. Choi, Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J. Chromatogr. A 1434, 50–56 (2016). https://doi.org/10.1016/j.chroma.2016.01.037

    Article  PubMed  CAS  Google Scholar 

  18. Z.M. Jiang, L.J. Wang, Z. Gao, B. Zhuang, Q. Yin, E.H. Liu, Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchem. J. 145, 345–353 (2019). https://doi.org/10.1016/j.microc.2018.10.057

    Article  CAS  Google Scholar 

  19. C.Y. Cai, Y.N. Wang, W. Yu, C.Y. Wang, F.F. Li, Z.J. Tan, Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum. J. Clean. Prod. 274, 123047 (2020). https://doi.org/10.1016/j.jclepro.2020.123047

    Article  CAS  Google Scholar 

  20. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142 (2004). https://doi.org/10.1021/ja048266j

    Article  PubMed  CAS  Google Scholar 

  21. Q.H. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012). https://doi.org/10.1039/c2cs35178a

    Article  PubMed  CAS  Google Scholar 

  22. A. García, E. Rodríguez-Juan, G. Rodríguez-Gutiérrez, J.J. Rios, J. Fernández-Bolaños, Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 197, 554–561 (2016). https://doi.org/10.1016/j.foodchem.2015.10.131

    Article  PubMed  CAS  Google Scholar 

  23. Y. Liu, J.B. Friesen, J.B. McAlpine, D.C. Lankin, S.N. Chen, G.F. Pauli, Natural deep eutectic solvents: properties, applications, and perspectives. J. Nat. Prod. 81, 679–690 (2018). https://doi.org/10.1021/acs.jnatprod.7b00945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. M.H. Zainal-Abidin, M. Hayyan, A. Hayyan, N.S. Jayakumar, New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal. Chim. Acta 979, 1–23 (2017). https://doi.org/10.1016/j.aca.2017.05.012

    Article  PubMed  CAS  Google Scholar 

  25. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  PubMed  CAS  Google Scholar 

  26. B. Zhuang, L.L. Dou, P. Li, E.H. Liu, Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 134, 214–219 (2017). https://doi.org/10.1016/j.jpba.2016.11.049

    Article  PubMed  CAS  Google Scholar 

  27. L. Duan, L.L. Dou, L. Guo, P. Li, E.H. Liu, Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain. Chem. Eng. 4, 2405–2411 (2016). https://doi.org/10.1021/acssuschemeng.6b00091

    Article  CAS  Google Scholar 

  28. S. Bajkacz, J. Adamek, Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 168, 329–335 (2017). https://doi.org/10.1016/j.talanta.2017.02.065

    Article  PubMed  CAS  Google Scholar 

  29. M. Cvjetko Bubalo, N. Ćurko, M. Tomašević, K. Kovačević Ganić, I. Radojcic Redovnikovic, Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 200, 159–166 (2016). https://doi.org/10.1016/j.foodchem.2016.01.040

    Article  PubMed  CAS  Google Scholar 

  30. Y. Dai, J. van Spronsen, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013). https://doi.org/10.1016/j.aca.2012.12.019

    Article  PubMed  CAS  Google Scholar 

  31. J. Boateng, M. Verghese, L.T. Walker, S. Ogutu, Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT - Food Sci. Technol. 41, 1541–1547 (2008). https://doi.org/10.1016/j.lwt.2007.11.025

    Article  CAS  Google Scholar 

  32. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. Hawkins Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675 (2006). https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  33. Y.G. Wang, Y.L. Li, X.Q. Ma, H.W. Ren, W.G. Fan, F.F. Leng, M.J. Yang, X.L. Wang, Extraction, purification, and bioactivities analyses of polysaccharides from Glycyrrhiza uralensis. Ind. Crops Prod. 122, 596–608 (2018). https://doi.org/10.1016/j.indcrop.2018.06.011

    Article  CAS  Google Scholar 

  34. A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents—solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014). https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  35. Y.T. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 85, 6272–6278 (2013). https://doi.org/10.1021/ac400432p

    Article  PubMed  CAS  Google Scholar 

  36. Y. Liu, J. Garzon, J.B. Friesen, Y. Zhang, J.B. McAlpine, D.C. Lankin, S.N. Chen, G.F. Pauli, Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fitoterapia 112, 30–37 (2016). https://doi.org/10.1016/j.fitote.2016.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Y.H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends, G.J. Witkamp, R. Verpoorte, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156, 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. M. Ruesgas-Ramón, M.C. Figueroa-Espinoza, E. Durand, Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J. Agric. Food Chem. 65, 3591–3601 (2017). https://doi.org/10.1021/acs.jafc.7b01054

    Article  PubMed  CAS  Google Scholar 

  39. Chinese Pharmacopoeia Commission.in Chinese Pharmacopoeia (China Medical Science and Technology Press, Beijing, 2010), pp. 154−155.

  40. I.K. Chun, Y.M. Cho, Influence of pH, temperature, ionic strength and metal ions on the degradation of an iridoid glucoside, aucubin, in buffered aqueous solutions. J. Korea Pharm. Sci. 25, 239–247 (1995). (in Korean)

    CAS  Google Scholar 

  41. S. Srisupap, C. Chaicharoenpong, In vitro antioxidant and antityrosinase activities of Manilkara kauki. Acta Pharm. 71, 153–162 (2021). https://doi.org/10.2478/acph-2021-0009

    Article  PubMed  CAS  Google Scholar 

  42. D. van Osch, C.H.J.T. Dietz, J. van Spronsen, F. Gallucci, M. van Sint Annaland, R. Tuinier, M.C. Kroon, A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain. Chem. Eng. 7, 2933–2942 (2019). https://doi.org/10.1021/acssuschemeng.8b03520

    Article  CAS  Google Scholar 

  43. L. Yu, L. Gao, Y.H. Chang, C.J. Duan, C. Liu, X.L. Zhao, G.L. Yue, X.Q. Wang, Y.J. Fu, Enhanced extraction performance of iridoids, phenolic acids from Eucommia ulmoides leaves by tailor-made ternary deep eutectic solvent. Microchem. J. 161, 105788 (2021). https://doi.org/10.1016/j.microc.2020.105788

    Article  CAS  Google Scholar 

  44. S.B. Luo, X.M. Ren, X.Q. Shi, K. Zhong, Z.J. Zhang, Z.T. Wang, Study on enhanced extraction and seasonal variation of secondary metabolites in Eucommia ulmoides leaves using deep eutectic solvents. J. Pharm. Biomed. Anal. 209, 114514 (2021). https://doi.org/10.1016/j.jpba.2021.114514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFE0127000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ma, W., Chen, B. et al. Deep eutectic solvents in the extraction of active compounds from Eucommia Ulmoides Oliv. leaves. Food Measure 16, 3410–3422 (2022). https://doi.org/10.1007/s11694-022-01427-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01427-w

Keywords

Navigation