Skip to main content
Log in

Extraction of Lignosulfonate from Black Liquor into Construction of a Magnetic Lignosulfonate-Based Adsorbent and Its Adsorption Properties for Dyes from Aqueous Solutions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignosulfonate, one of the lignin derivatives, was extracted from the black liquor as a byproduct of the wood and paper industry. It was used to prepare magnetic aminated lignosulfonate/carbon (MALS/C) adsorbent for the adsorption of Congo red and methyl orange dyes from an aqueous solution. The physical and chemical characteristics of the synthesized samples were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). The MALS/C adsorbent performance in the adsorption process of Congo red and methyl orange dyes was examined in a batch system. The effects of essential parameters, such as pH of the solution, adsorbent dosage, contact time, initial concentration of dye, and temperature, on the adsorption of the mentioned dyes, were assessed. The maximum removal efficiency of Congo red in the conditions (adsorbent dosage 0.01 g, contact time 120 min, initial dye concentration 20 mg/L, pH 6, and temperature 25 °C) and methyl orange in the conditions (adsorbent dosage 0.01 g, contact time 120 min, initial dye concentration 20 mg/L, pH 2, and temperature 25 °C) was 97.09 and 72.08%, respectively. Besides, after five regeneration times, the removal efficiency for Congo red and methyl orange dyes under a similar condition declined to 81 and 58%, respectively. The kinetics and adsorption isotherms examination were performed. The results demonstrated that the adsorption data for both dyes were consistent with the pseudo-second-order kinetic model and the Langmuir adsorption isotherm. The maximum adsorption capacity calculated by the Langmuir model was 167.61 and 121.28 mg/g for Congo red and methyl orange dyes, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  2. Hu Z, Yan S, Yao L, Moudi M (2018) Efficiency evaluation with feedback for regional water use and wastewater treatment. J Hydrol 562:703–711. https://doi.org/10.1016/j.jhydrol.2018.05.032

    Article  Google Scholar 

  3. Meng Y, Li C, Liu X, Lu J, Cheng Y, Xiao L-P, Wang H (2019) Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci Total Environ 685:847–855. https://doi.org/10.1016/j.scitotenv.2019.06.278

    Article  CAS  PubMed  Google Scholar 

  4. Guo K, Gao B, Yue Q, Xu X, Li R, Shen X (2018) Characterization and performance of a novel lignin-based flocculant for the treatment of dye wastewater. Int Biodeterior Biodegrad 133:99–107. https://doi.org/10.1016/j.ibiod.2018.06.015

    Article  CAS  Google Scholar 

  5. Azhdari R, Mousavi SM, Hashemi SA, Bahrani S, Ramakrishna S (2019) Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater. J Environ Chem Eng 7(6):103437. https://doi.org/10.1016/j.jece.2019.103437

    Article  CAS  Google Scholar 

  6. He Z, Chen Q, Luo Y, He Y, Zhang Y, Liu T, Xu W, Zhang J, Liu Y et al (2021) Degradable CO2-responsive microgels with wrinkled porous structure for enhanced, selective and recyclable removal of anionic dyes, Cr(VI) and As(V). Eur Polym J 149:110374. https://doi.org/10.1016/j.eurpolymj.2021.110374

    Article  CAS  Google Scholar 

  7. Etemadinia T, Barikbin B, Allahresani A (2019) Removal of Congo red dye from aqueous solutions using ZnFe2O4/SiO2/Tragacanth gum magnetic nanocomposite as a novel adsorbent. Surf Interfaces 14:117–126. https://doi.org/10.1016/j.surfin.2018.10.010

    Article  CAS  Google Scholar 

  8. Gapusan RB, Balela MDL (2020) Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyaniline–kapok fiber nanocomposite. Mater Chem Phys 243:122682. https://doi.org/10.1016/j.matchemphys.2020.122682

    Article  CAS  Google Scholar 

  9. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, Alothman ZA (2021) Magnetic chitosan–glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of Remazol brilliant blue R dye removal. J Polym Environ. https://doi.org/10.1007/s10924-021-02160-z

    Article  Google Scholar 

  10. Sahoo JK, Paikra SK, Mishra M, Sahoo H (2019) Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J Mol Liq 282:428–440. https://doi.org/10.1016/j.molliq.2019.03.033

    Article  CAS  Google Scholar 

  11. Das TR, Sharma PK (2020) Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye. Mater Sci Semicond Process 105:104721. https://doi.org/10.1016/j.mssp.2019.104721

    Article  CAS  Google Scholar 

  12. Liu S, Wang W, Cheng Y, Yao L, Han H, Zhu T, Liang Y, Fu J (2020) Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. J Colloid Interface Sci 574:410–420. https://doi.org/10.1016/j.jcis.2020.04.057

    Article  CAS  PubMed  Google Scholar 

  13. Tang J, Zhang Y-F, Liu Y, Li Y, Hu H (2020) Efficient ion-enhanced adsorption of Congo red on polyacrolein from aqueous solution: experiments, characterization and mechanism studies. Sep Purif Technol 252:117445. https://doi.org/10.1016/j.seppur.2020.117445

    Article  CAS  Google Scholar 

  14. Wang Y, Wu Y, Cong H, Wang S, Shen Y, Yu B (2021) Preparation of pyridine polyionic liquid porous microspheres and their application in organic dye adsorption. J Polym Environ. https://doi.org/10.1007/s10924-021-02203-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D (2019) Superior adsorption of methyl orange by h-MoS2 microspheres: isotherm, kinetics, and thermodynamic studies. Dyes Pigments 170:107591. https://doi.org/10.1016/j.dyepig.2019.107591

    Article  CAS  Google Scholar 

  16. Mubarak NSA, Bahrudin N, Jawad AH, Hameed B, Sabar S (2021) Microwave enhanced synthesis of sulfonated chitosan-montmorillonite for effective removal of methylene blue. J Polym Environ. https://doi.org/10.1007/s10924-021-02172-9

    Article  Google Scholar 

  17. Habiba U, Siddique TA, Joo TC, Salleh A, Ang BC, Afifi AM (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr Polym 157:1568–1576. https://doi.org/10.1016/j.carbpol.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  18. Yuvaraja G, Chen D-Y, Pathak JL, Long J, Subbaiah MV, Wen J-C, Pan C-L (2020) Preparation of novel aminated chitosan Schiff’s base derivative for the removal of methyl orange dye from aqueous environment and its biological applications. Int J Biol Macromol 146:1100–1110. https://doi.org/10.1016/j.ijbiomac.2019.09.236

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Hou X, Pan Y, Wang L, Xiao H (2020) Redox-responsive carboxymethyl cellulose hydrogel for adsorption and controlled release of dye. Eur Polym J 123:109447. https://doi.org/10.1016/j.eurpolymj.2019.109447

    Article  CAS  Google Scholar 

  20. Ma Y-Z, Zheng D-F, Mo Z-Y, Dong R-J, Qiu X-Q (2018) Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids Surf A 559:226–234. https://doi.org/10.1016/j.colsurfa.2018.09.054

    Article  CAS  Google Scholar 

  21. Li J, Li H, Yuan Z, Fang J, Chang L, Zhang H, Li C (2019) Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. Int J Biol Macromol 135:1171–1181. https://doi.org/10.1016/j.ijbiomac.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  22. Supanchaiyamat N, Jetsrisuparb K, Knijnenburg JT, Tsang DC, Hunt AJ (2019) Lignin materials for adsorption: current trend, perspectives and opportunities. Bioresour Technol 272:570–581. https://doi.org/10.1016/j.biortech.2018.09.139

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J (2018) Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 206:587–596. https://doi.org/10.1016/j.chemosphere.2018.04.183

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Huang S, Zheng J, Qiu Z, Lin X, Qin Y (2019) Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int J Biol Macromol 140:538–545. https://doi.org/10.1016/j.ijbiomac.2019.08.142

    Article  CAS  PubMed  Google Scholar 

  25. Jiang C, Wang X, Qin D, Da W, Hou B, Hao C, Wu J (2019) Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J Hazard Mater 369:50–61. https://doi.org/10.1016/j.jhazmat.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  26. Kayan GÖ, Kayan A (2021) Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. J Polym Environ. https://doi.org/10.1007/s10924-021-02154-x

    Article  Google Scholar 

  27. Li X, He Y, Sui H, He L (2018) One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 8(3):162. https://doi.org/10.3390/nano8030162

    Article  CAS  PubMed Central  Google Scholar 

  28. Wang Y, Zhu L, Wang X, Zheng W, Hao C, Jiang C, Wu J (2018) Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes. J Ind Eng Chem 61:321–330. https://doi.org/10.1016/j.jiec.2017.12.030

    Article  CAS  Google Scholar 

  29. Fang R, Cheng X, Xu X (2010) Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol 101(19):7323–7329. https://doi.org/10.1016/j.biortech.2010.04.094

    Article  CAS  PubMed  Google Scholar 

  30. Laszlo J (1999) Solubility and dye-binding properties of quaternized and peroxidase-polymerized kraft lignin. Environ Technol 20(6):607–615. https://doi.org/10.1080/09593332008616855

    Article  CAS  Google Scholar 

  31. Heo JW, An L, Chen J, Bae JH, Kim YS (2022) Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. Chemosphere 295:133815. https://doi.org/10.1016/j.chemosphere.2022.133815

    Article  CAS  PubMed  Google Scholar 

  32. Harja M, Buema G, Bucur D (2022) Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci Rep 12(1):1–18. https://doi.org/10.1038/s41598-022-10093-3

    Article  CAS  Google Scholar 

  33. Abukhadra MR, Adlii A, Bakry BM (2019) Green fabrication of bentonite/chitosan@ cobalt oxide composite (BE/CH@ Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr(VI) from water. Int J Biol Macromol 126:402–413. https://doi.org/10.1016/j.ijbiomac.2018.12.225

    Article  CAS  PubMed  Google Scholar 

  34. Zhang P, Xiang M, He T, Liu H, Yu S, Pan X, Qiu F, Zhu Z, Zou Y et al (2021) High-efficiency water purification for methyl orange and lead(II) by eco-friendly magnetic sulfur-doped graphene-like carbon-supported layered double oxide. J Hazard Mater 419:126406. https://doi.org/10.1016/j.jhazmat.2021.126406

    Article  CAS  PubMed  Google Scholar 

  35. Sadeghi N, Shayesteh K, Lotfiman S (2017) Effect of modified lignin sulfonate on controlled-release urea in soil. J Polym Environ 25(3):792–799. https://doi.org/10.1007/s10924-016-0848-6

    Article  CAS  Google Scholar 

  36. Jean M, Nachbaur V, Le Breton J-M (2012) Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3+ concentration. J Alloys Compd 513:425–429. https://doi.org/10.1016/j.jallcom.2011.10.064

    Article  CAS  Google Scholar 

  37. Huong PTL, Lan H, An TT, Van Quy N, Tuan PA, Alonso J, Phan M-H, Le A-T (2018) Magnetic iron oxide–carbon nanocomposites: impacts of carbon coating on the As(V) adsorption and inductive heating responses. J Alloys Compd 739:139–148. https://doi.org/10.1016/j.jallcom.2017.12.178

    Article  CAS  Google Scholar 

  38. Jawad AH, Norrahma SSA, Hameed B, Ismail K (2019) Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: adsorption and mechanism study. Int J Biol Macromol 135:569–581. https://doi.org/10.1016/j.ijbiomac.2019.05.127

    Article  CAS  PubMed  Google Scholar 

  39. Lawal IA, Klink M, Ndungu P (2019) Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye. Environ Res 179:108837. https://doi.org/10.1016/j.envres.2019.108837

    Article  CAS  PubMed  Google Scholar 

  40. Satheesh R, Vignesh K, Rajarajan M, Suganthi A, Sreekantan S, Kang M, Kwak BS (2016) Removal of Congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater Chem Phys 180:53–65. https://doi.org/10.1016/j.matchemphys.2016.05.029

    Article  CAS  Google Scholar 

  41. Gautam RK, Rawat V, Banerjee S, Sanroman MA, Soni S, Singh SK, Chattopadhyaya MC (2015) Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J Mol Liq 212:227–236. https://doi.org/10.1016/j.molliq.2015.09.006

    Article  CAS  Google Scholar 

  42. Zhuang Y, Yuan S, Liu J, Zhang Y, Du H, Wu C, Zhao P, Chen H, Pei Y (2020) Synergistic effect and mechanism of mass transfer and catalytic oxidation of octane degradation in yolk-shell Fe3O4@ C/Fenton system. Chem Eng J 379:122262. https://doi.org/10.1016/j.cej.2019.122262

    Article  CAS  Google Scholar 

  43. Fotukian SM, Barati A, Soleymani M, Alizadeh AM (2020) Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J Alloys Compd 816:152548. https://doi.org/10.1016/j.jallcom.2019.152548

    Article  CAS  Google Scholar 

  44. Zhang Z, Kong J (2011) Novel magnetic Fe3O4@ C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329. https://doi.org/10.1016/j.jhazmat.2011.07.033

    Article  CAS  PubMed  Google Scholar 

  45. da Silva RJ, Mojica-Sánchez LC, Gorza FD, Pedro GC, Maciel BG, Ratkovski GP, da Rocha HD, do Nascimento KT, Medina-Llamas JC et al (2021) Kinetics and thermodynamic studies of Methyl Orange removal by polyvinylidene fluoride-PEDOT mats. J Environ Sci 100:62–73. https://doi.org/10.1016/j.jes.2020.04.034

    Article  CAS  Google Scholar 

  46. Purkait MK, Maiti A, Dasgupta S, De S (2007) Removal of Congo red using activated carbon and its regeneration. J Hazard Mater 145(1–2):287–295. https://doi.org/10.1016/j.jhazmat.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  47. Mate CJ, Mishra S (2020) Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol 151:677–690. https://doi.org/10.1016/j.ijbiomac.2020.02.192

    Article  CAS  PubMed  Google Scholar 

  48. Jiang R, Zhu H-Y, Fu Y-Q, Zong E-M, Jiang S-T, Li J-B, Zhu J-Q, Zhu Y-Y (2021) Magnetic NiFe2O4/MWCNTs functionalized cellulose bioadsorbent with enhanced adsorption property and rapid separation. Carbohydr Polym 252:117158. https://doi.org/10.1016/j.carbpol.2020.117158

    Article  CAS  PubMed  Google Scholar 

  49. Alkurdi SS, Al-Juboori RA, Bundschuh J, Bowtell L, Marchuk A (2021) Inorganic arsenic species removal from water using bone char: a detailed study on adsorption kinetic and isotherm models using error functions analysis. J Hazard Mater 405:124112. https://doi.org/10.1016/j.jhazmat.2020.124112

    Article  CAS  PubMed  Google Scholar 

  50. Hazzaa R, Hussein M (2015) Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environ Technol Innov 4:36–51. https://doi.org/10.1016/j.eti.2015.04.002

    Article  Google Scholar 

  51. Alrobei H, Prashanth M, Manjunatha C, Kumar CP, Chitrabanu C, Shivaramu PD, Kumar KY, Raghu M (2021) Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: isotherms, kinetics and statistical error analysis. Ceram Int 47(7):10322–10331. https://doi.org/10.1016/j.ceramint.2020.07.251

    Article  CAS  Google Scholar 

  52. Noreen S, Mustafa G, Ibrahim SM, Naz S, Iqbal M, Yaseen M, Javed T, Nisar J (2020) Iron oxide (Fe2O3) prepared via green route and adsorption efficiency evaluation for an anionic dye: kinetics, isotherms and thermodynamics studies. J Mater Res Technol 9(3):4206–4217. https://doi.org/10.1016/j.jmrt.2020.02.047

    Article  CAS  Google Scholar 

  53. Zhang J, Yan X, Hu M, Hu X, Zhou M (2018) Adsorption of Congo red from aqueous solution using ZnO-modified SiO2 nanospheres with rough surfaces. J Mol Liq 249:772–778. https://doi.org/10.1016/j.molliq.2017.11.109

    Article  CAS  Google Scholar 

  54. Liu J, Wang N, Zhang H, Baeyens J (2019) Adsorption of Congo red dye on FexCo3−xO4 nanoparticles. J Environ Manag 238:473–483. https://doi.org/10.1016/j.jenvman.2019.03.009

    Article  CAS  Google Scholar 

  55. Goddeti SMR, Bhaumik M, Maity A, Ray SS (2020) Removal of Congo red from aqueous solution by adsorption using gum ghatti and acrylamide graft copolymer coated with zero valent iron. Int J Biol Macromol 149:21–30. https://doi.org/10.1016/j.ijbiomac.2020.01.099

    Article  CAS  PubMed  Google Scholar 

  56. Yu J, Zhang X, Wang D, Li P (2018) Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Sci Technol 77(5):1303–1312. https://doi.org/10.2166/wst.2018.003

    Article  CAS  PubMed  Google Scholar 

  57. Ahmad A, Razali MH, Mamat M, Mehamod FSB, Amin KAM (2017) Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites. Chemosphere 168:474–482. https://doi.org/10.1016/j.chemosphere.2016.11.028

    Article  CAS  PubMed  Google Scholar 

  58. Yönten V, Sanyürek NK, Kivanç MR (2020) A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surf Interfaces 20:100529. https://doi.org/10.1016/j.surfin.2020.100529

    Article  CAS  Google Scholar 

  59. Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697. https://doi.org/10.1016/j.cej.2015.08.131

    Article  CAS  Google Scholar 

  60. Akar E, Altinişik A, Seki Y (2013) Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng 52:19–27. https://doi.org/10.1016/j.ecoleng.2012.12.032

    Article  Google Scholar 

  61. Zeng S, Duan S, Tang R, Li L, Liu C, Sun D (2014) Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J 258:218–228. https://doi.org/10.1016/j.cej.2014.07.093

    Article  CAS  Google Scholar 

  62. Kittappa S, Jais FM, Ramalingam M, Mohd NS, Ibrahim S (2020) Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. J Environ Chem Eng 8(5):104081. https://doi.org/10.1016/j.jece.2020.104081

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Babol Noshirvani University of Technology (BNUT) Grant Program No. BNUT/974115008/1400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikzad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsalani, H., Nikzad, M. & Ghoreyshi, A.A. Extraction of Lignosulfonate from Black Liquor into Construction of a Magnetic Lignosulfonate-Based Adsorbent and Its Adsorption Properties for Dyes from Aqueous Solutions. J Polym Environ 30, 4068–4085 (2022). https://doi.org/10.1007/s10924-022-02493-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02493-3

Keywords

Navigation