Skip to main content
Log in

Radish leaf protein concentrates: optimization of alkaline extraction for production and characterization of an alternative plant protein concentrate

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Radish leaf protein concentrates (RLPC) were prepared by alkaline extraction and characterized for their antioxidant activity, functional properties, mineral content, in-vitro digestibility and microbial stability. Numerical optimization using the 3-factor Box–Behnken Design of response surface methodology suggested that the optimized extraction was obtained at a pH of 9.46, sample/water ratio of 0.075 and time of extraction 46.89 min resulting in 12.12% yield of RLPC with protein content of 87.64%. Glutelins (41.49%), prolamins (24.96%) and albumins (20.43%) were found to be the three major fractions of the protein concentrate, while globulins (13.00%) contributed as a minor component. The apparent molecular weights of these protein fractions ranged between 14 and 60 kDa. Antioxidant activities (FRAP, ABTS and DPPH) were higher in RLPC as compared to the isolated fractions. Functional properties like water holding capacity, oil holding capacity, emulsifying capacity and emulsion stability of the RLPC were 352, 280, 48.1 and 47.8%, respectively. Ca and Fe were the most abundant major and trace minerals, respectively, present in the RLPC. In-vitro protein digestibility was found to be 93.51% and its microbial load remained in acceptable limits during 42 days of storage under both refrigerated and ambient temperature conditions. Our results indicated that the protein concentrates extracted from radish leaves have considerable antioxidant activity, functional properties, mineral content, digestibility and microbial stability. The results highlight the potential of RLPC for use in functional foods as a safe and cost-effective source of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rani, Y. Arfat, R.S. Aziz, L. Ali, H. Ahmed, S. Asim, M. Rashid, C.H. Hocart, Environ. Technol. Innov. 23, 1–13 (2021). https://doi.org/10.1016/j.eti.2021.101620

    Article  CAS  Google Scholar 

  2. Ankita, K. Prasad, Pharm. Lett. 7, 269–279 (2015)

    Google Scholar 

  3. K.V. Badar, A.U. Kulkarni, Curr. Bot. 2, 5–7 (2011)

    CAS  Google Scholar 

  4. A.E. Ghaly, F.N. Alkoaik, Am. J. Appl. Sci. (2010). https://doi.org/10.3844/ajassp.2010.331.342

    Article  Google Scholar 

  5. S. Jiamyangyuen, V. Srijesdaruk, W.J. Harper, Extension 27, 56 (2005)

    Google Scholar 

  6. S. Tang, N.S. Hettiararchy, S. Eswaranandam, P. Crandall, Food Sci. (2003). https://doi.org/10.1111/j.1365-2621.2003.tb05696.x

    Article  Google Scholar 

  7. A.O. Fasuyi, V.A. Aletor, Pak. J. Nutr. (2005). https://doi.org/10.3923/pjn.2005.43.49

    Article  Google Scholar 

  8. P.F. Coldebella, S.D. Gomes, J.A. Evarini, M.P. Cereda, S.R. Coelho, A. Coldebella, Eng. Agric. 33, 1223–1233 (2013)

    Google Scholar 

  9. M.H. Soo, N.A. Samad, D.N.A. Zaidel, Y.M.M. Jusoh, I.I. Muhamad, Z. Hashim, Chem. Eng. Trans. (2021). https://doi.org/10.3303/CET2189043

    Article  Google Scholar 

  10. S. Rawdkuen, Food Appl. Biosci. J. 8, 43–67 (2020)

    Google Scholar 

  11. M. Contreras, A. Lama-Muñoz, J.G.P. Manuel, F. Espínola, M. Moya, E. Castro, Bioresour Technol. (2019). https://doi.org/10.1016/j.biortech.2019.02.040

    Article  PubMed  Google Scholar 

  12. C. Zhang, J.P.M. Sanders, T.T. Xiao, M.E. Burns, PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0133046

    Article  PubMed  PubMed Central  Google Scholar 

  13. S.O. Ogunwolu, F.O. Henshaw, H.P. Mock, A. Santros, S.O. Awonorin, Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2009.01.011

    Article  Google Scholar 

  14. A.A. Wani, D.S. Sogi, L. Grover, D.C. Saxena, Biosyst. Eng. (2006). https://doi.org/10.1016/j.biosystemseng.2006.02.004

    Article  Google Scholar 

  15. AOAC, Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington, DC, 2000)

  16. A.P. Adebiyi, R.E. Aluko, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2011.03.116

    Article  PubMed  Google Scholar 

  17. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193, 265 (1951)

    Article  CAS  Google Scholar 

  18. U.K. Laemmli, Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  19. C.W. Lin, C.W. Yu, K.H. Yih, J. Food Drug Anal. 5, 386–395 (2009)

    Google Scholar 

  20. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. (1999). https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  PubMed  Google Scholar 

  21. I.F. Benzie, J.J. Strain, Anal. Biochem. (1996). https://doi.org/10.1006/abio.1996.0292

    Article  PubMed  Google Scholar 

  22. W.E. Hillis, T. Swain, J. Sci. Food Agric. 10, 135–144 (1969). https://doi.org/10.1002/jsfa.2740100211

    Article  Google Scholar 

  23. I.S. Balbaa, A.Y. Zaki, A.M. El Shamy, J. Assoc. Off. Anal. Chem. 57, 752–755 (1974). https://doi.org/10.1093/jaoac/57.3.752

    Article  CAS  Google Scholar 

  24. J. Yu, M. Ahmedna, I. Goktepe, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.08.012

    Article  Google Scholar 

  25. M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, J. Food Sci. (1974). https://doi.org/10.1111/j.1365-2621.1974.tb02896.x

    Article  Google Scholar 

  26. K. Yasumatsu, K. Sawada, S. Moritaka, M. Misaki, J. Toda, T. Wada, K. Ishii, Agric. Biol. Chem. (1972). https://doi.org/10.1080/00021369.1972.108603212

    Article  Google Scholar 

  27. C.W. Coffman, V.V. Garcia, J. Food Tech. 12, 473–484 (1977)

    Article  Google Scholar 

  28. N. Huda, A. Abdullah, A.S. Babji, Int. J. Food Sci. Technol. (2001). https://doi.org/10.1046/j.1365-2621.2001.00473.x

    Article  Google Scholar 

  29. J.F. Pedler, D.R. Parker, D.E. Crowley, Planta (2000). https://doi.org/10.1007/s004250000270

    Article  PubMed  Google Scholar 

  30. D. Znidarcic, T. Pozrl, Acta. Agric. Slov. 87, 235–243 (2006)

    Google Scholar 

  31. M. Minekus, M. Alminger, P. Alvito, S. Balance, Brodkorb A. Food Funct. (2014). https://doi.org/10.1039/C3FO60702J

    Article  PubMed  Google Scholar 

  32. V. Nour, I. Trandafir, S. Cosmulescu, J. Chrom. Sci. 51, 883–890 (2013). https://doi.org/10.1093/chromsci/bms180

    Article  CAS  Google Scholar 

  33. R. Aslam, M.S. Alam, S. Singh, S. Kumar, LWT 151, 112183 (2021). https://doi.org/10.1016/j.lwt.2021.112183

    Article  CAS  Google Scholar 

  34. G. Kaur, S. Bhatia, Int. J. Agric. Sci. (2021). https://doi.org/10.15740/HAS/IJAS/17.2/185-193

    Article  Google Scholar 

  35. G.S. Mann, S. Bhatia, M.S. Alam, Agric. Eng. Int. CIGRJ. 4, 243–251 (2016)

    Google Scholar 

  36. A. Akyuz, S. Ersus, Food Chem. 335, 127673 (2021). https://doi.org/10.1016/j.foodchem.2020.127673

    Article  CAS  PubMed  Google Scholar 

  37. M. Wang, N.S. Hettiarachchy, M. Qi, W. Burks, T. Siebenmorgen, J Agric. Food Chem. (1999). https://doi.org/10.1021/jf9806964

    Article  PubMed  Google Scholar 

  38. I.S. Rustom, M.H. Lopex-Leiva, B.M. Nair, Food Sci. (1991). https://doi.org/10.1016/0308-8146(91)90031-I

    Article  Google Scholar 

  39. D.N. López, M. Galante, M. Robson, V. Boeris, D. Spelzini, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.080

    Article  PubMed  Google Scholar 

  40. M. Çelik, M. Güzel, M. Yildirim, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03785-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. B.P. Lamsal, R.G. Koegel, S. Gunasekaran, LWT Food Sci. Technol. (2007). https://doi.org/10.1016/j.lwt.2006.11.010

    Article  Google Scholar 

  42. A.A. Famuwagun, A.M. Alashi, S.O. Gbadamosi, K.A. Taiwo, D.J. Oyedele, O.C. Adebooye, R.E. Aluko, Int. J. Food Prop. (2020). https://doi.org/10.1080/10942912.2020.1772285

    Article  Google Scholar 

  43. A.P. Adebiyi, A.O. Adebiyi, Y. Hasegawa, T. Ogawa, K. Muramoto, Eur. Food Res. Technol. (2009). https://doi.org/10.1007/s00217-008-0945-4

    Article  Google Scholar 

  44. J. Dai, R.J. Mumper, Molecules (2010). https://doi.org/10.3390/molecules15107313

    Article  PubMed  PubMed Central  Google Scholar 

  45. O. Kadiri, C.T. Akanbi, B.T. Olawoye, S.O. Gbadamosi, Int. J. Food Prop. (2017). https://doi.org/10.1080/10942912.2016.1230874

    Article  Google Scholar 

  46. Z. Xie, J. Huang, X. Xu, Z. Jin, Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2008.03.078

    Article  PubMed  Google Scholar 

  47. M. Delfanian, S.M. Razavi, M.H.H. Khodaparast, R.E. Kenari, S. Golmohammadzadeh, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2018.03.043

    Article  PubMed  Google Scholar 

  48. A. Sodamade, S.M. Raimi, A.D. Owonikoko, A.T. Adebimpe, IJTSRD. 36, 57–68 (2019)

    Google Scholar 

  49. A. Fernández-Quintela, M.T. Macarulla, A.S. Del Barrio, J.A. Martínez, Plant Food Hum. Nutr. 51, 331–341 (1997)

    Article  Google Scholar 

  50. P.C. Sharma, B.M.K.S. Tilakratne, A. Gupta, J. Food Sci. Technol. (2010). https://doi.org/10.1007/s13197-010-0096-z

    Article  PubMed  PubMed Central  Google Scholar 

  51. S.K. Sathe, S.S. Deshpande, D.K. Salunkhe, J. Food Sci. (1982). https://doi.org/10.1111/j.1365-2621.1982.tb10110.x

    Article  Google Scholar 

  52. S. Damodaran, Food Sci. Technol. 1, 1–24 (1997)

    Google Scholar 

  53. A. Subagio, Food Chem. (2006). https://doi.org/10.1016/j.foodchem.2004.12.042

    Article  Google Scholar 

  54. A.M. Ghribi, I.M. Gafsi, C. Blecker, S. Danthine, H. Attia, S. Besbes, J. Food Eng. (2015). https://doi.org/10.1016/j.jfoodeng.2015.06.021

    Article  Google Scholar 

  55. O. Aletor, A. Oshodi, K. Ipinmoroti, Food Chem. (2002). https://doi.org/10.1016/S0308-8146(01)00376-4

    Article  Google Scholar 

  56. R. Chatterjee, T.K. Dey, M. Ghosh, P. Dhar, Food Bioprod. Process 94, 70–81 (2015)

    Article  CAS  Google Scholar 

  57. M. Du, J. Xie, B. Gong, X. Xu, W. Tang, X. Li, C. Li, M. Xie, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2017.01.003

    Article  Google Scholar 

  58. K. Shevkani, N. Singh, A. Kaur, J.C. Rana, Food Hydrocoll. 43, 679–689 (2015)

    Article  CAS  Google Scholar 

  59. J. Cheng, S. Zhou, D. Wu, J. Chen, D. Liu, X. Ye, Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2008.05.106

    Article  Google Scholar 

  60. F. Garcia-Moreno, E. Solórzano, J. Banhart, Soft Matter 7, 9216–9223 (2011)

    Article  CAS  Google Scholar 

  61. H. Wu, Q. Wang, T. Ma, J. Ren, Food Res. Int. (2009). https://doi.org/10.1016/j.foodres.2008.12.006

    Article  Google Scholar 

  62. T.G. Kudre, S. Benjakul, H. Kishimura, J. Sci. Food Agric. (2013). https://doi.org/10.1002/jsfa.6052

    Article  PubMed  Google Scholar 

  63. NRC, National Research Council (1989) https://doi.org/10.17226/1349

  64. S.A. El Sohaimy, G.M. Hamad, S.E. Mohamed, M.H. Amar, R.R. Al-Hindi, Global Adv. Res. J. Agric. Sci. 4, 188–199 (2015)

    Google Scholar 

  65. J.O. Agbede, J. Sci. Food Agr. (2006). https://doi.org/10.1002/jsfa.2491

    Article  Google Scholar 

  66. J.K. Mensah, R.I. Okoli, J.O. Ohaju-Obodo, K. Eifediyi, Afr. J. Biotechnol. 7, 14 (2008)

    Google Scholar 

  67. L.H. Khan, V.K. Varshney, J. Diet Suppl. (2018). https://doi.org/10.1080/19390211.2017.1349232

    Article  PubMed  Google Scholar 

  68. R. Toews, N. Wang, Food Res. Int. (2013). https://doi.org/10.1016/j.foodres.2012.12.009

    Article  Google Scholar 

  69. G. Pumilia, M.J. Cichon, J.L. Cooperstone, G. Dugo, S.J. Schwartz, Food Res. Int. (2014). https://doi.org/10.1016/j.foodres.2014.05.047

    Article  Google Scholar 

  70. J.Y. Han, K. Khan, Cereal Chem. 67, 384–390 (1990)

    CAS  Google Scholar 

  71. Y.A. Adebowale, I.A. Adeyemi, A.A. Oshodi, K. Niranjan, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.11.05

    Article  Google Scholar 

  72. T.A. Aderinola, A.M. Alashi, I.D. Nwachukwu, T.N. Fagbemi, T.N. Enujiugha, R.E. Aluko, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105574

    Article  Google Scholar 

  73. T. Benhammouche, A. Melo, Z. Martins, M.A. Faria, S.C. Pinho, I.M. Ferreira, F. Zaidi, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.128858

    Article  PubMed  Google Scholar 

  74. M. Corgneau, C. Gaiani, J. Petit, Y. Nikolova, S. Banon, L. Riti’e-Pertusa, D.T.L. Le, J. Scher, Int. J. Dood Sci. Technol. (2019). https://doi.org/10.1111/ijfs.14170

    Article  Google Scholar 

  75. P. Goufo, I. Cortez, Biology (2020). https://doi.org/10.3390/biology9090268

    Article  PubMed  PubMed Central  Google Scholar 

  76. R. Flamini, Mass Spec. Rev. 22, 218–250 (2008). https://doi.org/10.1002/mas.10052

    Article  CAS  Google Scholar 

  77. FSSAI Specification (2018) for dehydrated vegetable products. https://archive.fssai.gov.in

  78. R. Sasikumar, K. Vivek, A.K. Jaiswal, J. Food Process. Preserv. (2021). https://doi.org/10.1111/jfpp.15568

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr Tarsem Singh Dhillon, Associate Director (Seeds), Punjab Agricultural University, Ludhiana for providing radish leaves and Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana for providing facilities for carrying out the research experiments. The authors are also thankful to Dr Amrit Kaur Mahal (Professor of Statistics) for her guidance in statistical analysis during research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurkanwal Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Bhatia, S. Radish leaf protein concentrates: optimization of alkaline extraction for production and characterization of an alternative plant protein concentrate. Food Measure 16, 3166–3181 (2022). https://doi.org/10.1007/s11694-022-01411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01411-4

Keywords

Navigation