Skip to main content
Log in

A Green, Efficient Approach on Extraction of Polyphenols from Fenugreek Seeds (Trigonella foenum-graecum): DES and β-Cyclodextrin Assisted Extraction

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Trigonella foenum-graecum, is a widely used medicinal and culinary plant. The antioxidant compounds extracted from the seeds of this plant exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, antioxidant compounds from the seeds of Trigonella foenum-graecum were obtained using the deep eutectic solvent (DES) assisted and β-cyclodextrin assisted extraction method. The process was optimized by implementing a response surface methodology that took into consideration the following independent variables: β-cyclodextrin concentration (Cβ-CD) or DES concentration, solid-to-liquid ratio, and temperature. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging activity of Trigonella foenum-graecum antioxidant compounds on DPPH*, the total phenolic yield (YTP) and total flavonoid yield (YTF) was determined. Using the optimized conditions for DES extractions, the yields were 0.019 mmol TRE/g seed, 14.73 mg GAE/g seed and 0.092 mmol QE/g seed for AAR, YTP and YYF respectively. For β-cd assisted extraction, using the optimized conditions, the yields were 0.1213 mmol TRE/g seed, 12.89 mg GAE/g seed and 0.1602 mmol QE/g seed for AAR, YTP and YYF respectively. However, based on regression analysis and optimization based on solvent type it is observed that the extraction yield with β-cyclodextrin solutions is statistically significantly (P < 0.05) higher than the corresponding yield with solutions of deep eutectic solvent mixtures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to possible patent application procedure but are available from the corresponding author on reasonable request.

References

  1. Vilas-Boas, A.A., Campos, D.A., Nunes, C., Ribeiro, S., Nunes, J., Oliveira, A., Pintado, M.: Polyphenol extraction by different techniques for valorisation of non-compliant portuguese sweet cherries towards a novel antioxidant extract. Sustainability 12, 5556 (2020). https://doi.org/10.3390/su12145556

    Article  Google Scholar 

  2. Ribeiro, B.D., Coelho-Zafur, M.A., Marrucho, I.M.: Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur. Food Res. Technol. 237, 965–975 (2013). https://doi.org/10.1007/s00217-013-2068-9

    Article  Google Scholar 

  3. Zhang, L., Zheng, D., Zhang, Q.-F.: Purification of total flavonoids from Rhizoma Smilacis Glabrae through cyclodextrin-assisted extraction and resin adsorption. Food Sci. Nutr. 7, 449–456 (2019). https://doi.org/10.1002/fsn3.809

    Article  Google Scholar 

  4. Kaviarasan, S., Naik, G.H., Gangabhagirathi, R., Anuradha, C.V., Priyadarsini, K.I.: In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 103, 31–37 (2007). https://doi.org/10.1016/j.foodchem.2006.05.064

    Article  Google Scholar 

  5. Pena-Pereira, F., Namiesnik, J.: Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chemsuschem 7, 1784–1800 (2014). https://doi.org/10.1002/cssc.201301192

    Article  Google Scholar 

  6. Al-Juhaimi, F., Adiamo, O.Q., Ghafoor, K., Babiker, E.E.: Optimization of ultrasonic-assisted extraction of phenolic compounds from fenugreek (Trigonella foenum-graecum L.) seed. CyTA – J. Food (2015). https://doi.org/10.1080/19476337.2015.1110202

    Article  Google Scholar 

  7. Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 85, 6272–6278 (2013). https://doi.org/10.1021/ac400432p

    Article  Google Scholar 

  8. Mourtzinos, I., Anastasopoulou, E., Petrou, A., Grigorakis, S., Makris, D., Biliaderis, C.G.: Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 53, 3939–3947 (2016). https://doi.org/10.1007/s13197-016-2381-y

    Article  Google Scholar 

  9. Cai, R., Yuan, Y., Cui, L., Wang, Z., Yue, T.: Cyclodextrin-assisted extraction of phenolic compounds: current research and future prospects. Trends Food Sci. Technol. 79, 19–27 (2018). https://doi.org/10.1016/j.tifs.2018.06.015

    Article  Google Scholar 

  10. Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156, 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426

    Article  Google Scholar 

  11. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  12. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb). (2003). https://doi.org/10.1039/b210714g

    Article  Google Scholar 

  13. CvjetkoBubalo, M., Ćurko, N., Tomašević, M., KovačevićGanić, K., Radojčić, R.I.: Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 200, 159–166 (2016). https://doi.org/10.1016/j.foodchem.2016.01.040

    Article  Google Scholar 

  14. Benvenutti, L., Zielinski, A.A.F., Ferreira, S.R.S.: Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 90, 133–146 (2019). https://doi.org/10.1016/j.tifs.2019.06.003

    Article  Google Scholar 

  15. Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int J Pharm. 453, 167–180 (2013). https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  Google Scholar 

  16. Diamanti, A.C., Igoumenidis, P.E., Mourtzinos, I., Yannakopoulou, K., Karathanos, V.T.: Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chem. 214, 61–66 (2017). https://doi.org/10.1016/j.foodchem.2016.07.072

    Article  Google Scholar 

  17. Mortensen, A., Aguilar, F., Crebelli, R., Di-Domenico, A., Dusemund, B., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Leblanc, J.C., Lindtner, O., Moldeus, P., Mosesso, P., Parent-Massin, D., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Younes, M., Boon, P., Chrysafidis, D., Gürtler, R., Tobback, P., Arcella, D., Rincon, A.M., Lambré, C.: Re-evaluation of β-cyclodextrin (E 459) as a food additive. EFSA J. (2016). https://doi.org/10.2903/j.efsa.2016.4628

    Article  Google Scholar 

  18. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  Google Scholar 

  19. Ahmad, A., Alghamdi, S.S., Mahmood, K., Afzal, M.: Fenugreek a multipurpose crop: potentialities and improvements. Saudi J. Biol. Sci. 23, 300–310 (2016). https://doi.org/10.1016/j.sjbs.2015.09.015

    Article  Google Scholar 

  20. Wani, S.A., Kumar, P.: Fenugreek: a review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 17, 97–106 (2018). https://doi.org/10.1016/j.jssas.2016.01.007

    Article  Google Scholar 

  21. Benayad, Z., Gomez-Cordoves, C., Es-Safi, N.E.: Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int. J. Mol. Sci. 15, 20668–20685 (2014). https://doi.org/10.3390/ijms151120668

    Article  Google Scholar 

  22. Benayad, Z., Gómez-Cordovés, C., Es-Safi, N.E.: Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J. Food Compos. Anal. 35, 21–29 (2014). https://doi.org/10.1016/j.jfca.2014.04.002

    Article  Google Scholar 

  23. Rababah, T.M., Ereifej, K.I., Esoh, R.B., Al-u’datt, M.H., Alrababah, M.A., Yang, W.: Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat. Prod. Res. 25, 596–605 (2011). https://doi.org/10.1080/14786419.2010.488232

    Article  Google Scholar 

  24. Pajak, P., Socha, R., Broniek, J., Krolikowska, K., Fortuna, T.: Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 275, 69–76 (2019). https://doi.org/10.1016/j.foodchem.2018.09.081

    Article  Google Scholar 

  25. Omezzine, F., Bouaziz, M., Daami-Remadi, M., Simmonds, M.S.J., Haouala, R.: Chemical composition and antifungal activity of Trigonella foenum-graecum L. varied with plant ploidy level and developmental stage. Arab. J. Chem. 10, S3622–S3631 (2017). https://doi.org/10.1016/j.arabjc.2014.03.013

    Article  Google Scholar 

  26. Kenny, O., Smyth, T.J., Hewage, C.M., Brunton, N.P.: Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 141, 4295–4302 (2013). https://doi.org/10.1016/j.foodchem.2013.07.016

    Article  Google Scholar 

  27. Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M.S., El Feki, A., Makni-Ayedi, F.: Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chem. 138, 1448–1453 (2013). https://doi.org/10.1016/j.foodchem.2012.11.003

    Article  Google Scholar 

  28. Jiang, J.X., Zhu, L.W., Zhang, W.M., Sun, R.C.: Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. Int. J. Polym. Mater. 56, 1145–1154 (2007). https://doi.org/10.1080/00914030701323745

    Article  Google Scholar 

  29. Loukri, A., Tsitlakidou, P., Goula, A., Assimopoulou, A.N., Kontogiannopoulos, K.N., Mourtzinos, I.: Green extracts from coffee pulp and their application in the development of innovative brews. Appl. Sci. 10, 6982 (2020). https://doi.org/10.3390/app10196982

    Article  Google Scholar 

  30. Arnous, A., Makris, D.P., Kefalas, P.: Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 15, 655–665 (2002). https://doi.org/10.1006/jfca.2002.1070

    Article  Google Scholar 

  31. Cvek, J., Medić-Šarić, M., Jasprica, I., Zubčić, S., Vitali, D., Mornar, A., Vedrina-Dragojević, I., Tomić, S.: Optimisation of an extraction procedure and chemical characterisation of Croatian propolis tinctures. Phytochem. Anal. 18, 451–459 (2007). https://doi.org/10.1002/pca.1001

    Article  Google Scholar 

  32. Francisco, M., van den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013). https://doi.org/10.1002/anie.201207548

    Article  Google Scholar 

  33. Hammond, O.S., Bowron, D.T., Edler, K.J.: The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56, 9782–9785 (2017). https://doi.org/10.1002/anie.201702486

    Article  Google Scholar 

  34. Zhu, G., Xiao, Z., Zhu, G., Niu, Y.: Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Pol. J. Chem. Technol. 18, 110 (2016). https://doi.org/10.1515/pjct-2016-0056

    Article  Google Scholar 

  35. Rayyan, S., Fossen, T., Andersen, O.M.: Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. J. Agric. Food Chem. 58, 7211–7217 (2010). https://doi.org/10.1021/jf100848c

    Article  Google Scholar 

  36. Georgantzi, C., Lioliou, A.-E., Paterakis, N., Makris, D.P.: Combination of lactic acid-based deep eutectic solvents (DES) with β-cyclodextrin: performance screening using ultrasound-assisted extraction of polyphenols from selected native Greek medicinal plants. Agronomy 7, 54 (2017). https://doi.org/10.3390/agronomy7030054

    Article  Google Scholar 

  37. Kumar, S., Pandey, A.K.: Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013, 162750 (2013). https://doi.org/10.1155/2013/162750

    Article  Google Scholar 

  38. Elboughdiri, N.: Effect of time, solvent-solid ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from olive leaves. Eng. Technol. Appl. Sci. Res. 8, 2805–2808 (2018). https://doi.org/10.48084/etasr.1983

    Article  Google Scholar 

  39. Pinelo, M., Rubilar, M., Sineiro, J., Núñez, M.: Extraction of antioxidant phenolics from almond hulls (Prunus amygdlus) and pine sawdust (Pinus pinaster). Food Chem. 85, 267–273 (2004). https://doi.org/10.1016/j.foodchem.2003.06.020

    Article  Google Scholar 

  40. Wijngaard, H., Hossain, M.B., Rai, D.K., Brunton, N.: Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 46, 505–513 (2012). https://doi.org/10.1016/j.foodres.2011.09.027

    Article  Google Scholar 

  41. Blidi, S., Bikaki, M., Grigorakis, S., Loupassaki, S., Makris, D.P.: A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: apple waste peels as a case study. Waste Biomass Valoriz. 6, 1125–1133 (2015). https://doi.org/10.1007/s12649-015-9410-3

    Article  Google Scholar 

  42. Alvarez-Parrilla, E., de la Rosa, L.A., Rodrigo-García, J., Escobedo-González, R., Mercado-Mercado, G., Moyers-Montoya, E., Vázquez-Flores, A., González-Aguilar, G.A.: Dual effect of β-cyclodextrin (β-CD) on the inhibition of apple polyphenol oxidase by 4-hexylresorcinol (HR) and methyl jasmonate (MJ). Food Chem. 101, 1346–1356 (2007). https://doi.org/10.1016/j.foodchem.2006.03.040

    Article  Google Scholar 

  43. Stražišar, M., Andrenšek, S., Šmidovnik, A.: Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 110, 636–642 (2008). https://doi.org/10.1016/j.foodchem.2008.02.051

    Article  Google Scholar 

  44. Baghbani-Arani, A., Modarres-Sanavy, S.A.M., Mashhadi-Akbar-Boojar, M., Mokhtassi-Bidgoli, A.: Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Ind. Crops Prod. 109, 346–357 (2017). https://doi.org/10.1016/j.indcrop.2017.08.049

    Article  Google Scholar 

  45. Gabriele, F., Chiarini, M., Germani, R., Tiecco, M., Spreti, N.: Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 291, 111301 (2019). https://doi.org/10.1016/j.molliq.2019.111301

    Article  Google Scholar 

  46. Dai, J., Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010). https://doi.org/10.3390/molecules15107313

    Article  Google Scholar 

  47. Peng, Y., Meng, Q., Zhou, J., Chen, B., Xi, J., Long, P., Zhang, L., Hou, R.: Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem. 242, 527–532 (2018). https://doi.org/10.1016/j.foodchem.2017.09.094

    Article  Google Scholar 

  48. Korompokis, K., Igoumenidis, P., Mourtzinos, I., Karathanos, V.: Green extraction and simultaneous inclusion complex formation of Sideritis scardica polyphenols. Int. Food Res. J. 24, 1233–1238 (2017)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos Frangopoulos.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frangopoulos, T. A Green, Efficient Approach on Extraction of Polyphenols from Fenugreek Seeds (Trigonella foenum-graecum): DES and β-Cyclodextrin Assisted Extraction. Waste Biomass Valor 13, 4403–4415 (2022). https://doi.org/10.1007/s12649-022-01785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01785-y

Keywords

Navigation