Skip to main content

Advertisement

Log in

Towards New Sustainable Squalene Resources: Extraction from Apulian “Aged Extra-Virgin Olive Oil Sludge” (AEVOO-S). A Comparison Between Organic Solvent and Supercritical Fluid Techniques

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Valorisation of agro-industry organic wastes has gained importance in the last decades since it pursues two major goals: environment protection and economic profit. Squalene that represents one the most important natural antioxidant for pharmaceutical and cosmeceutical industry, can be recovered from olive oil production wastes, playing a prominent role to substitute of the shark liver oil as main squalene resource, with great benefits from the marine species protection. The “Aged Extra Virgin Olive Oil-Sludge” (AEVOO-S) a less studied olive oil waste contains squalene in a good concentration depending by the starting Extra Virgin Olive Oil (EVOO) quality (cultivar, extraction processes) and storage conditions. In the present work, fresh EVOO, aged olive oil (AEVOO) and isolated sludge have been characterized and compared in some chemico/ physical properties that confirm the applicability of this waste as a further alternative squalene source. Organic solvent under different conditions and supercritical-CO2 extraction of squalene methodologies, were evaluated in order to optimize its recovery. The results showed that at room temperature, chloroform extracts the highest squalene amount (up to 500 mg/100 g of sludge) but with low selectivity (high amount of free fatty acids were also detected) whereas Microwave Assisted Extraction using n-hexane as solvent, provided high squalene yield (456 mg/100 g of sludge) but with less free fatty acid. Due to the high viscosity of the semi-solid sludge, supercritical carbon dioxide does not show the high squalene extraction ability showed using oils.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Buckingham, J.: Dictionary of Natural Products. Chapman and Hall, London (1994)

    Google Scholar 

  2. Gershenzon, J., Dudareva, N.: The function of terpene natural products in the natural world. Nat Chem Biol. 3, 408–414 (2007). https://doi.org/10.1038/nchembio.2007.5

    Article  Google Scholar 

  3. Theis, N., Lerdau, M.: The evolution of function in plant secondary metabolites. Int. J. Plant Sci. 164, S93–S103 (2003). https://doi.org/10.1086/374190

    Article  Google Scholar 

  4. Nes, W.R.: Roles of sterols in membranes. Lipids 9, 596–612 (1974). https://doi.org/10.1007/BF02532509

    Article  Google Scholar 

  5. Brigelius-Flohé, R., Kelly, F.J., Salonem, J.T., Neuzil, J., Zingg, J.M., Azzi, A.: The European perspective on vitamin E: current knowledge and future research. Am. J. Clin. Nutr. 76, 703–716 (2002). https://doi.org/10.1093/ajcn/76.4.703

    Article  Google Scholar 

  6. Kelly, G.S.: Squalene and its potential clinical uses. Altern Med Rev 4(1), 29–36 (1999)

    Google Scholar 

  7. Kaiya, A.: The use of natural squalene and squalene, and the latest situation of the raw materials. J. Oleo. Sci. 39, 525–529 (1990). https://doi.org/10.5650/jos1956.39.8_525

    Article  Google Scholar 

  8. Rosenthal, M.L., (1964) Cosmetics and the Skin, In: F.V.Wells and I.I. Lubowe, (eds). Reinhold Publishing Corporation, New York

  9. Rosales-Garcia, T., Jimenez-Martinez, C., Dávila-Ortiz, G.: Squalene extraction: Biological sources and extraction methods. Int. J. Environ. Agric. Biotechnol. 2, 1662–1670 (2017). https://doi.org/10.22161/ijeab/2.4.26

    Article  Google Scholar 

  10. http://www.marketsandmarkets.com/Market-Reports/squalene-market-542345.htm

  11. Hernández-Pérez, M., Gallego, R.M.R., Alayón, P.J.P., Hernández, A.B.: Squalene content in livers from deep-sea sharks caught in Canary Island waters. Mar. Freshw Res. 48, 573–576 (1997). https://doi.org/10.1071/MF97004

    Article  Google Scholar 

  12. He, H.-P., Cai, Y., Sun, M., Corke, H.: Extraction and purification of squalene from amaranthus grain. J. Agric Food Chem. 50, 368–372 (2002). https://doi.org/10.1021/jf010918p

    Article  Google Scholar 

  13. Frega, N., Bocci, F., Lercker, G.: Direct gas chromatographic analysis of the unsaponifiable fraction of different oils with a polar capillary column. J. Am. Oil. Chem. Soc. 69, 447–450 (1992). https://doi.org/10.1021/jf010918p

    Article  Google Scholar 

  14. Grauželienė, S., Valaityte, D., Motiekaityte, D., Ostrauskaite, J.: Bio-based crosslinked polymers synthesized from functionalized soybean oil and squalene by Thiol-Ene UV curing. Materials 14(10), 2675 (2021). https://doi.org/10.3390/ma14102675

    Article  Google Scholar 

  15. Azalia Lozano-Grande, M., Gorinstein, S., Espitia-Rangel, E., D ́ avila-Ortiz, G., Martınez-Ayala, A.L.: Plant sources, extraction methods, and uses of squalene. Int. J. Agron. 2018, 1–13 (2018). https://doi.org/10.1155/2018/1829160

    Article  Google Scholar 

  16. Sun, H., Wiesenborn, D., Tostenson, K., Gillespie, J., Rayas-Duarte, P.: Fractionation of squalene from amaranth seed oil. J. Am. Oil. Chem. Soc. 74, 413–418 (1997). https://doi.org/10.1007/s11746-997-0099-8

    Article  Google Scholar 

  17. Patel, A., Bettiga, M., Rova, U., Christakopoulos, P., Matsakas, L.: Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol. (2022). https://doi.org/10.1016/j.tibtech.2022.03.008

    Article  Google Scholar 

  18. Naziri, E., Mantzouridou, F., Tsimidou, M.Z.: Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J. Agric. Food Chem. 59, 9980–9989 (2011). https://doi.org/10.1021/jf201328a

    Article  Google Scholar 

  19. Bhattacharjee, P., Singhal, R.S.: Extraction of squalene from yeast by supercritical carbon dioxide. World J. Microbiol. Biotechnol. 19, 605–608 (2003). https://doi.org/10.1023/A:1025146132281

    Article  Google Scholar 

  20. Blagovic, B., Rupcic, J., Mesaric, M., Georgiu, K., Maric, V.: Lipid composition of brewer’s yeast. Food Technol. Biotechnol. 39, 175–181 (2001)

    Google Scholar 

  21. Otero, P., Garcia-Oliveira, P., Carpena, M., Barral-Martinez, M., Chamorro, F., Echave, J., Garcia-Perez, P., Cao, H., Xiao, J., Simal-Gandara, J., Prieto, M.S.: Applications of by-products from the olive oil processing: revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci. Technol. 116, 1084–1104 (2021). https://doi.org/10.1016/j.tifs.2021.09.007

    Article  Google Scholar 

  22. Roselló-Soto, E., Barba, F.J., Parniakov, O., Galanakis, C.M., Lebovka, N., Grimi, N., Vorobiev, E.: High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food Bioprocess Tech 8, 885–894 (2014). https://doi.org/10.1007/s11947-014-1456-x

    Article  Google Scholar 

  23. Lozano-Sánchez, J., Giambanelli, E., Quirantes-Piné, R., Cerretani, L., Bendini, A., Segura-Carretero, A., Fernández-Gutiérrez, A.: Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds. J. Agric. Food Chem. 59, 11491–11500 (2011). https://doi.org/10.1021/jf202596q

    Article  Google Scholar 

  24. Peri, C.: Chapter 15- Extra-virgin olive oil storage and handling, in Extra-virgin olive oil handbook. John Wiley & Sons Ltd (2014)

    Book  Google Scholar 

  25. Ciafardini, G., Zullo, B.A.: Microbiological activity in stored olive oil. Int. J. Food Microbiol 75, 111–118 (2002). https://doi.org/10.1016/S0168-1605(01)00739-5

    Article  Google Scholar 

  26. Doula, M.K., Moreno-Ortego, J.L., Tinivella, F., Inglezakis, V.J., Sarris, A., Komnitsas, K.: Chapter 2—Olive mill waste: recent advances for the sustainable development of olive oil industry. In: Galanakis, C. (ed.) Olive mill waste. Academic Press (2017)

    Google Scholar 

  27. Kiritsakis, A., Tsipeli, A.: Relationship of the acidity of olive oil to its resistance to oxidation. Riv. Ital. Sost Grasse. 69, 513–515 (1992)

    Google Scholar 

  28. Kuriakose, A.P., Manjooran, S.K.B.: Utilization of refinery sludge for lighter oils and industrial bitumen. Energy Fuels. 8, 788–792 (1994). https://doi.org/10.1021/ef00045a037

    Article  Google Scholar 

  29. Fonts, I., Kuoppala, E., Oasmaa, A.: Physicochemical properties of product liquid from pyrolysis of sewage sludge. Energy Fuels. 23, 4121–4128 (2009). https://doi.org/10.1021/ef900300n

    Article  Google Scholar 

  30. Bokovikova, T.N., Shperber, D.R., Shperber, E.R.: Application of oil-slimes in road base and surface construction. NAFTA 62, 383–385 (2011)

    Google Scholar 

  31. Shie, J.-L., Chang, C.-Y., Lin, J.-P., Wu, C.-H., Lee, D.-J.: Resources recovery of oil sludge by pyrolysis: kinetics study. J. Chem. Technol. Biotechnol. 75, 443–450 (2000). https://doi.org/10.1002/1097-4660(200006)75:6%3c443::AID-JCTB228%3e3.0.CO;2-B

    Article  Google Scholar 

  32. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, F.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 48, 1532–1552 (2013). https://doi.org/10.1016/j.procbio.2013.07.010

    Article  Google Scholar 

  33. Lavelli, V., Gregapane, G., Salvador, M: D.,: Effect of storage on secoiridoid and tocopherol contents and antioxidant activity of monovarietal extra virgin olive oils. J. Agric. Food Chem. 54, 3002–3007 (2006). https://doi.org/10.1021/jf052918

    Article  Google Scholar 

  34. Lanzon, A., Albi, T., Cert, A., Gracián, J.: Hydrocarbon fraction of virgin olive oil and changes resulting from refining. J. Am. Oil. Chem. Soc. 71, 285–291 (1994). https://doi.org/10.1007/BF02638054

    Article  Google Scholar 

  35. Gutfinger, T., Letan, A.: Studies of unsaponifiables in several vegetable oils. Lipids 9, 658–663 (1974). https://doi.org/10.1007/BF02532171

    Article  Google Scholar 

  36. Nocito, F., Ditaranto, N., Dibenedetto, A.: Valorization of C5 polyols by direct carboxylation to FDCA: synthesis and characterization of a key intermediate and role of carbon dioxide. J. CO2 Util. 32, 170–177 (2019). https://doi.org/10.1016/j.jcou.2019.04.013

    Article  Google Scholar 

  37. Nuchdang, S., Phruetthinan, N., Paleeleam, P., Domrongpokkaphan, V., Chuetor, S., Chirathivat, P., Phalakornkule, C.: Soxhlet, microwave-assisted, and room temperature liquid extraction of oil and bioactive compounds from palm kernel cake using isopropanol as solvent. Ind. Crops Prod. 176, 114379 (2022). https://doi.org/10.1016/j.indcrop.2021.114379

    Article  Google Scholar 

  38. Lee, S.C., Nkurunziza, D., Kim, S.Y., Surendhiran, D., Singh, A.A., Chun, B.S.: Supercritical carbon dioxide extraction of squalene rich cod liver oil: optimization, characterization and functional properties. J Supercrit Fluids 188, 105693 (2022). https://doi.org/10.1016/j.supflu.2022.105693

    Article  Google Scholar 

  39. Lu, X., Du, H., Liu, Y., Wang, Y., Li, D., Wang, L.: Effect of ultrasound-assisted solvent enzymatic extraction on fatty acid profiles, physicochemical properties, bioactive compounds, and antioxidant activity of elaeagnus mollis oil. Foods 11(3), 359 (2022). https://doi.org/10.3390/foods11030359

    Article  Google Scholar 

  40. Naziri, E., Mantzouridou, F., Tsimidou, M.Z.: Squalene resources and uses point to the potential of biotechnology. Lipid Technol. 23, 270–273 (2011). https://doi.org/10.1002/lite.201100157

    Article  Google Scholar 

  41. Pogliani, L., Milanesio, M., Ceruti, M., Viterbo, D.: Conformational and dynamical study of squalene derivatives. III: azasqualenes and solvated squalene. Chem. Phys. Lipids. 103, 81–93 (1999). https://doi.org/10.1016/S0009-3084(99)00063-8

    Article  Google Scholar 

  42. Naziri, E., Consonni, R., Tsimidou, M.Z.: Squalene oxidation products: monitoring the formation, characterisation and pro-oxidant activity. Eur. J. Lipid Sci. Technol. 116, 1400–1411 (2014). https://doi.org/10.1002/ejlt.201300506

    Article  Google Scholar 

  43. Zin, M.M., Anucha, C.B., Bánvölgyi, S.: Recovery of phytochemicals via electromagnetic irradiation (microwave-assisted-extraction): betalain and phenolic compounds in perspective. Foods. 9, 918–938 (2020). https://doi.org/10.3390/foods9070918

    Article  Google Scholar 

  44. Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006). https://doi.org/10.1016/j.tifs.2005.12.004

    Article  Google Scholar 

  45. Vázquez, L., Torres, C.F., Fornari, T., Señoráns, F.J., Reglero, G.: Recovery of squalene from vegetable oil sources using countercurrent supercritical carbon dioxide extraction. J. Supercrit. Fluids 40, 59–66 (2007). https://doi.org/10.1016/j.supflu.2006.04.012

    Article  Google Scholar 

  46. Lee, S.-C., Nkurunziza, D., Kim, S.-Y., Surendhiran, D., Singh, A.-A., Chun, B.-S.: Supercritical carbon dioxide extraction of squalene rich cod liver oil: optimization, characterization and functional properties. J. Supercrit. Fluids 188, 105693 (2022). https://doi.org/10.1016/j.supflu.2022.105693

    Article  Google Scholar 

  47. Dhara, O., Prasanna Rani, K.N., Prasad Chakrabarti, P.: Supercritical carbon dioxide extraction of vegetable oils: retrospective and prospects. Eur J Lipid Sci Technol 124, 2200006 (2022). https://doi.org/10.1002/ejlt.202200006

    Article  Google Scholar 

  48. https://www.chemicalbook.com

  49. Sangster, J.: Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18, 1111 (1989). https://doi.org/10.1063/1.555833

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the PRIN Project “CO2 as only source of carbons for monomers and polymers: a step forwards circular economy “ and the University of Bari. Also, the authors gratefully acknowledge Prof. Michele Aresta and Prof. Angela Dibenedetto for scientific support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. PRIN 2017, 2017WR2LRS

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology and writing original draft, FN. All authors contributed to the study, material preparation, data collection and analysis. ALG has worked in the preparation of this manuscript as ERASMUS Project Student. All authors read and approved the final manuscript

Corresponding author

Correspondence to Francesco Nocito.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nocito, F., Labrador Garcia, A. Towards New Sustainable Squalene Resources: Extraction from Apulian “Aged Extra-Virgin Olive Oil Sludge” (AEVOO-S). A Comparison Between Organic Solvent and Supercritical Fluid Techniques. Waste Biomass Valor 14, 2275–2284 (2023). https://doi.org/10.1007/s12649-022-01998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01998-1

Keywords

Navigation