Skip to main content

Emerging Solvent Extraction Technologies for Plant Protein Extraction: Aqueous Two-Phase Extraction; Deep Eutectic Solvent; Subcritical Water Extraction

  • Chapter
  • First Online:
  • 761 Accesses

Abstract

The plant protein market has been booming for several years now; consumers are increasingly looking for alternative sources to animal protein. Nowadays, plant protein concentrates/isolates are mainly produced by the alkaline extraction-isoelectric precipitation process. This process has a high productivity but is not so environmentally friendly due to the generation of a large volume of effluent following the isoelectric precipitation of the proteins. Under some conditions, the functional properties of the extracted proteins can also be negatively impacted. However, some innovative solvent extraction technologies for plant protein extraction (Aqueous two-phase extraction; Deep eutectic solvent; Subcritical water extraction) are emerging and they have high potential to preserve the functional properties of the extracted proteins. Aqueous two-phase extraction, deep eutectic solvent, and subcritical water extraction are also considered green extraction technologies. In this chapter, the basic principles of each technology, as well as their impact on protein extraction and functionality will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaide ER, Ugalde G, Di Luccio M, de F.P.M. Moreira R, Tres MV, Zabot GL, Mazutti MA (2019) Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresour Technol 272:510–520

    Article  CAS  Google Scholar 

  • Aguilar O, Rito-Palomares M (2008) Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins. J Chem Technol Biotechnol 83:286–293

    Article  CAS  Google Scholar 

  • Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120

    Article  CAS  Google Scholar 

  • Albertsson P-Å, Cajarville A, Brooks DE, Tjerneld F (1987) Partition of proteins in aqueous polymer two-phase systems and the effect of molecular weight of the polymer. Biochim Biophys Acta Gen Subj 926(1):87–93

    Article  CAS  Google Scholar 

  • Alonso-Riaño P, Sanz MT, Benito-Román O, Beltrán S, Trigueros E (2021) Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer’s spent grain. Food Chem 351:129264

    Article  Google Scholar 

  • Álvarez-Viñas M, Rodríguez-Seoane P, Flórez-Fernández N, Dolores Torres M, Díaz-Reinoso B, Moure A, Domínguez H (2021) Subcritical water for the extraction and hydrolysis of protein and other fractions in biorefineries from agro-food wastes and algae: a review. Food Bioprocess Technol 14(3):373–387

    Google Scholar 

  • Bai Y, Chen F, Liu M (2020) Separation of cellulose and lignin from eucalyptus wood by liquefaction in deep eutectic solvents. Bioresources 15(3):6886–6901

    Article  CAS  Google Scholar 

  • Bajkacz S, Adamek J (2018) Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal Methods 11(5):1330–1334

    Article  Google Scholar 

  • Cole KD (1993) Separation of lipoxygenase and the major soybean proteins using aqueous two-phase extraction and poly(ethylene glycol) precipitation systems. J Agric Food Chem 41:334–340

    Article  CAS  Google Scholar 

  • Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  CAS  Google Scholar 

  • Desai RK, Streefland M, Wijffels RH, Eppink MHM (2014) Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chem 16:2670–2679

    Article  CAS  Google Scholar 

  • Diamond AD, Hsu JT (1990) Protein partitioning in PEG/dextran aqueous two-phase systems. AICHE J 36(7):1017–1024

    Article  CAS  Google Scholar 

  • Du L, Arauzo PJ, Meza Zavala MF, Cao Z, Olszewski MP, Kruse A (2020) Towards the properties of different biomass-derived proteins via various extraction methods. Molecules 25:488

    Article  CAS  Google Scholar 

  • Grudniewska A, de Melo EM, Chan A, Gniłka R, Boratyński F, Matharu AS (2018) Enhanced protein extraction from oilseed cakes using glycerol−choline chloride deep eutectic solvents: a biorefinery approach. ACS Sustain Chem Eng 6:15791–15800

    Article  CAS  Google Scholar 

  • Gu Z, Glatz CE (2007) Aqueous two-phase extraction for protein recovery from corn extracts. J Chromatogr B 845:38–50

    Article  CAS  Google Scholar 

  • Hata S, Wiboonsirikul J, Maeda A, Kimura Y, Adachi S (2008) Extraction of defatted rice bran by subcritical water treatment. Biochem Eng J 40:44–53

    Article  CAS  Google Scholar 

  • Ho CHL, Cacace JE, Mazza G (2007) Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. LWT 40:1637–1647

    Article  CAS  Google Scholar 

  • Hong S, Shen X-J, Xue Z, Sun Z, Yuan T-Q (2020) Structure-function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem 22(21):7219–7232

    Article  CAS  Google Scholar 

  • Hwang YH, Cho H-Y, Kim K-R, Lee SH, Choi M-J (2015) Hydrolysis of isolate soybean protein using subcritical water. Korean J Food Sci Technol 47(6):772–778

    Article  Google Scholar 

  • Ivanovic M, Islamcevic Razboršek M, Kolar M (2020) Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plan Theory 2020(9):1428

    Google Scholar 

  • Kataoka M, Wiboonsirikul J, Kimura Y, Adachi S (2008) Properties of extracts from wheat bran by subcritical water treatment. Food Sci Technol Res 14(6):553–556

    Article  Google Scholar 

  • Khuwijitjaru P, Anantanasuwong S, Adachi S (2011) Emulsifying and foaming properties of defatted soy meal extracts obtained by subcritical water treatment. Int J Food Prop 14:9–16

    Article  CAS  Google Scholar 

  • Lee SY, Khoiroh I, Ooi CW, Ling TC, Show PL (2017) Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep Purif Rev 46(4):291–304

    Article  CAS  Google Scholar 

  • Li Y, Fang F, Sun M, Zhao Q, Hu Y, Sui Z, Liang Z, Zhang L, Zhang Y (2020) Ionic liquid-assisted protein extraction method for plant phosphoproteome analysis. Talanta 213:120848

    Article  CAS  Google Scholar 

  • Lin Z, Jiao G, Zhang J, Bonat Celli G, Su-Ling Brooks M (2021) Optimization of protein extraction from bamboo shoots and processing wastes using deep eutectic solvents in a biorefinery approach. Biomass Conver Biorefin 11(6):2763–2774

    Google Scholar 

  • Liu R-L, Yu P, Ge X-L, Bai X-F, Li X-Q, Fu Q (2017) Establishment of an aqueous PEG 200-based deep eutectic solvent extraction and enrichment method for pumpkin (Cucurbita moschata) seed protein. Food Anal Methods 10:1669–1680

    Article  Google Scholar 

  • Lu W, Chen X-W, Wang J-M, Yang X-Q, Qi J-R (2016) Enzyme-assisted subcritical water extraction and characterization of soy protein from heat-denatured meal. J Food Eng 169:250–258

    Article  CAS  Google Scholar 

  • MarketsandMarkets (n.d.) https://www.marketsandmarkets.com/Market-Reports/plant-based-protein-market-14715651.html?gclid=EAIaIQobChMIwcGJi8jt6gIVg8DICh2eBQviEAAYASAAEgIyKPD_BwE (accessed on October 10, 2022)

  • Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH (2020) The perspectives of natural deep eutectic solvents in agri-food sector. Crit Rev Food Sci Nutr 60(15):2564–2592

    Article  Google Scholar 

  • Mondor M, Hernández-Álvarez A-J (2022) Processing technologies to produce plant protein concentrates and isolates. In: Manickavasagan A, Lim L-T, Ali A (eds) Plant protein foods. Springer Nature, Switzerland, pp 61–108

    Google Scholar 

  • Mondor M, Ippersiel D, Lamarche F, Boye JI (2004) Production of soy protein concentrates using a combination of electroacidification and ultrafiltration. J Agric Food Chem 52:6991–6996

    Article  CAS  Google Scholar 

  • Ndlela SC, de Moura JMLN, Olson NK, Johnson LA (2012) Aqueous extraction of oil and protein from soybeans with subcritical water. J Am Oil Chem Soc 89:1145–1153

    Article  CAS  Google Scholar 

  • Nyankson E, Ramsurn H, Roman A, Gupta RB, Mosjidis J (2013) Subcritical water extraction of protein from Sunn hemp. Proceeding of the 2013 American Institute of Chemical Engineers Annual Meeting, San Francisco, CA, USA, November 3–8, 2013

    Google Scholar 

  • Özbek AG, Bilek SE (2018) Plant based protein sources and extraction. Curr Investig Agric Curr Res 2(1):169–171

    Google Scholar 

  • Parodi E, La Nasa J, Ribechini E, Petri A, Piccolo O (2021) Extraction of proteins and residual oil from flax (Linum usitatissimum), camelina (Camelina sativa), and sunflower (Helianthus annuus) oilseed press cakes. Biomass Conversion and Biorefinery, (in press)

    Google Scholar 

  • Pinkowska H, Wolak P, Oliveros E (2014) Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition. Biomass Bioenergy 64:50–61

    Article  CAS  Google Scholar 

  • Pojić M, Mišan A, Tiwari B (2018) Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 75:93–104

    Article  Google Scholar 

  • Prigent SVE, Gruppen H, Visser AJWG, Van Koningsveld GA, De Jong GAH, Voragen AGJ (2003) Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins. J Agric Food Chem 51:5088–5095

    Article  CAS  Google Scholar 

  • Raghavarao KSMS, Rastogi NK, Gowthaman MK, Karanth NG (1995) Aqueous two-phase extraction for downstream processing of enzymes/proteins. Adv Appl Microbiol 41(C):97–171

    Article  CAS  Google Scholar 

  • Ramachandraiah K, Koh B-B, Davaatseren M, Hong G-P (2017) Characterization of soy protein hydrolysates produced by varying subcritical water processing temperature. Innov Food Sci Emerg Technol 43:201–206

    Article  CAS  Google Scholar 

  • Santhi JV, Tavanandi HA, Sharma R, Prabhakar G, Raghavarao KSMS (2020) Differential partitioning of coconut whey proteins and fat using aqueous two phase extraction. Fluid Phase Equilib 503:112314

    Article  CAS  Google Scholar 

  • Sari YW, Mulder WJ, Sanders JPM, Bruins ME (2015) Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 10:1138–1157

    Article  CAS  Google Scholar 

  • Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A (2008) Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour Technol 99:555–561

    Article  CAS  Google Scholar 

  • Shang X, Dou Y, Zhang Y, Tan JN, Liu X, Zhang Z (2019) Tailor-made natural deep eutectic solvents for green extraction of isoflavones from chickpea (Cicer arietinum L.) sprouts. Ind Crop Prod 140:111724

    Article  CAS  Google Scholar 

  • Sunphorka S, Chavasiri W, Oshima Y, Ngamprasertsith S (2012) Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: optimization by response surface methodology. Int J Food Eng 8(3):Article 26

    Article  Google Scholar 

  • Tan Z-j, Li F-j, Xu X-l, Xing J-m (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393

    Article  CAS  Google Scholar 

  • Vázquez-González M, Fernández-Prior Á, Bermúdez Oria A, Rodríguez-Juan EM, Pérez-Rubio AG, Fernández-Bolaños J, Rodríguez-Gutiérrez G (2020) Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. Lwt 130:109645

    Article  Google Scholar 

  • Vedovatto F, Ugalde G, Bonatto C, Bazoti SF, Treichel H, Mazutti MA, Zabot GL, Tres MV (2021) Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. J Supercrit Fluids 167:105043

    Article  CAS  Google Scholar 

  • Viriya-Empikul N, Wiboonsirikul J, Kobayashi T, Adachi S (2012) Effects of temperature and flow rate on subcritical-water extraction from defatted rice bran. Food Sci Technol Res 18(3):333–340

    Article  CAS  Google Scholar 

  • Wahlström R, Rommi K, Willberg-Keyriläinen P, Ercili-Cura D, Holopainen-Mantila U, Hiltunen J, Mäkinen O, Nygren H, Mikkelson A, Kuutti L (2017) High yield protein extraction from brewer’s spent grain with novel carboxylate salt - urea aqueous deep eutectic solvents. Chemistry Select 2:9355–9363

    Google Scholar 

  • Wang M-P, Chen X-W, Guo J, Yang J, Wang J-M, Yang XQ (2019) Stabilization of foam and emulsion by subcritical water-treated soy protein: effect of aggregation state. Food Hydrocoll 87:619–628

    Article  CAS  Google Scholar 

  • Watchararuji K, Goto M, Sasaki M, Shotipruk A (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour Technol 99:6207–6213

    Article  CAS  Google Scholar 

  • Wiboonsirikul J, Kimura Y, Kadota M, Morita H, Tsuno T, Adachi S (2007) Properties of extracts from defatted rice bran by its subcritical water treatment. J Agric Food Chem 55:8759–8765

    Article  CAS  Google Scholar 

  • Wiboonsirikul J, Mori M, Khuwijitjaru P, Adachi S (2013) Properties of extract from okara by its subcritical water treatment. Int J Food Prop 16:974–982

    Article  CAS  Google Scholar 

  • Yucui H, Congfei Y, Weize W (2018) Deep eutectic solvents: green solvents for separation applications. Acta Phys -Chim Sin 34(8):873–885

    Article  Google Scholar 

  • Yue J, Zhu Z, Yi J, Lan Y, Chen B, Rao J (2021) Structure and functionality of oat protein extracted by choline chloride–dihydric alcohol deep eutectic solvent and its water binary mixtures. Food Hydrocoll 112:106330

    Article  CAS  Google Scholar 

  • Zhai Q, Long F, Jiang X, Hse C-Y, Jiang J, Xu J (2020) Facile and rapid fractionation of bamboo wood with a p-toluenesulfonic acid-based three-constituent deep eutectic solvent. Ind Crop Prod 158:113018

    Article  CAS  Google Scholar 

  • Zhang J, Wen C, Li C, Duan Y, Zhang H, Ma H (2019) Antioxidant peptide fractions isolated from wheat germ protein with subcritical water extraction and its transport across Caco-2 cells. J Food Sci 84(8):2139–2146

    Article  CAS  Google Scholar 

  • Zhang J, Zhang J, Wen C, Zhang H, Zandile M, Luo X, Duan Y, Ma H (2018) Structure of the zein protein as treated with subcritical water. Int J Food Prop 21(1):128–138

    Article  CAS  Google Scholar 

  • Zhang Q-T, Tu Z-C, Wang H, Huang X-Q, Fan L-L, Bao Z-Y, Xiao H (2015) Functional properties and structure changes of soybean protein isolate after subcritical water treatment. J Food Sci Technol 52(6):3412–3421

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mondor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 His Majesty the King in Right of Canada and The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondor, M., Hernández-Álvarez, A.J. (2023). Emerging Solvent Extraction Technologies for Plant Protein Extraction: Aqueous Two-Phase Extraction; Deep Eutectic Solvent; Subcritical Water Extraction. In: Hernández-Álvarez, A.J., Mondor, M., Nosworthy, M.G. (eds) Green Protein Processing Technologies from Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-16968-7_5

Download citation

Publish with us

Policies and ethics