Skip to main content

Advertisement

Log in

Valorization of by-products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications

  • Review Article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Huge quantities of vegetables and fruits by-products are discarded annually worldwide following the industrial food processing techniques. These biowastes were found to cause further environmental hazards. However, they could represent rich sources of numerous bioactive metabolites and substrates for high valued products. Specifically, onion (Allium cepa L.) and potato (Solanum tuberosum L.) are of economic importance since they are cultivated and found as chief components of most food recipes worldwide. Nevertheless, potato peels and the outer onion scaly leaves are major non-edible by-products. Both biowastes are rich in bioactive phenolic compounds, whereas potato peels are rich in chlorogenic acids and onion solid wastes in flavonoids, particularly flavonols (quercetin derivatives). Also, they are good sources of dietary fibers, fatty acids, starches, sugars and proteins. In addition, they are potential candidates for biofuels production. Hence, with the recent advances of bio-refinery concepts valorization of such treasures is highly recommended. The current review highlighted the major metabolic classes of onion and potato agro-industrial wastes and how we can utilize the available possibilities to maximize the recovery and benefits of metabolites found in these wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Takkellapati, S., Li, T., Gonzalez, M.A.: An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy. 20, 1615–1630 (2018). https://doi.org/10.1007/s10098-018-1568-5

    Article  Google Scholar 

  2. Kamm, B., Kamm, M.: Principles of biorefineries. Appl. Microbiol. Biotechnol. 64, 137–145 (2004). https://doi.org/10.1007/s00253-003-1537-7

    Article  Google Scholar 

  3. Regestein, L., Klement, T., Grande, P., Kreyenschulte, D., Heyman, B., Maßmann, T., Eggert, A., Keller, R., Wang, Y., Wierckx, N., Blank, L., Spiess, A., Leitner, W., Bolm, C., Wessling, M., Jupke, A., Rosenbaum, M., Büchs, J.: From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnol. Biofuels 11, 279 (2018). https://doi.org/10.1186/s13068-018-1273-y

    Article  Google Scholar 

  4. Tippkötter, N., Duwe, A.M., Wiesen, S., Sieker, T., Ulber, R.: Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresour. Technol. 167, 447–455 (2014). https://doi.org/10.1016/j.biortech.2014.06.052

    Article  Google Scholar 

  5. Pascoalino, L.A., Reis, F.S., Prieto, M.A., Barreira, J.C.M., Ferreira, I.C.F.R., Barros, L.: Valorization of bio-residues from the processing of main portuguese fruit crops: from discarded waste to health promoting compounds. Molecules 26, 2624 (2021). https://doi.org/10.3390/molecules26092624

    Article  Google Scholar 

  6. Ranganathan, S., Dutta, S., Moses, J.A., Anandharamakrishnan, C.: Utilization of food waste streams for the production of biopolymers. Heliyon 6, e04891 (2020). https://doi.org/10.1016/j.heliyon.2020.e04891

    Article  Google Scholar 

  7. Zayed, A., Tawfik Badawy, M., Farag, M.: Valorization and extraction optimization of citrus seeds for food and functional food applications. Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.129609

    Article  Google Scholar 

  8. Hasnaoui, N., Wathelet, B., Jiménez-Araujo, A.: Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties. Food Chem. 160, 196–203 (2014). https://doi.org/10.1016/j.foodchem.2014.03.089

    Article  Google Scholar 

  9. Jiménez-Moreno, N., Cimminelli, M.J., Volpe, F., Ansó, R., Esparza, I., Mármol, I., Rodríguez-Yoldi, M.J., Ancín-Azpilicueta, C.: Phenolic composition of artichoke waste and its antioxidant capacity on differentiated Caco-2 cells. Nutrients 11, 1723 (2019). https://doi.org/10.3390/nu11081723

    Article  Google Scholar 

  10. Zayed, A., Farag, M.A.: Valorization, extraction optimization and technology advancements of artichoke biowastes: food and non-food applications. LWT 132, 109883 (2020). https://doi.org/10.1016/j.lwt.2020.109883

    Article  Google Scholar 

  11. Górska-Warsewicz, H., Rejman, K., Kaczorowska, J., Laskowski, W.: Vegetables, potatoes and their products as sources of energy and nutrients to the average diet in poland. Int. J. Environ. Res. Public Health 18, 3217 (2021). https://doi.org/10.3390/ijerph18063217

    Article  Google Scholar 

  12. da Silva, M.G.R., Skrt, M., Komes, D., Poklar Ulrih, N., Pogačnik, L.: Enhanced yield of bioactivities from onion (Allium cepa L.) skin and their antioxidant and anti-α-amylase activities. Int. J. Mol. Sci. 21, E2909 (2020). https://doi.org/10.3390/ijms21082909

    Article  Google Scholar 

  13. Sharma, K., Mahato, N., Nile, S., Lee, Y.: Economical and environment-friendly approaches for usage of onion (Allium cepa L) wastes. Food Funct. 7, 3354–3369 (2016). https://doi.org/10.1039/C6FO00251J

    Article  Google Scholar 

  14. Manousaki, A., Jancheva, M., Grigorakis, S., Makris, D.P.: Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1, 194–204 (2016). https://doi.org/10.3390/recycling1010194

    Article  Google Scholar 

  15. Sattar, F.A., Hamooh, B.T., Wellman, G., Ali, M.A., Shah, S.H., Anwar, Y., Mousa, M.A.A.: Growth and biochemical responses of potato cultivars under in vitro lithium chloride and mannitol simulated salinity and drought stress. Plants 10, 924 (2021). https://doi.org/10.3390/plants10050924

    Article  Google Scholar 

  16. Bedrníček, J., Kadlec, J., Laknerová, I., Mráz, J., Samková, E., Petrášková, E., Hasoňová, L., Vácha, F., Kron, V., Smetana, P.: Onion peel powder as an antioxidant-rich material for sausages prepared from mechanically separated fish meat. Antioxidants 9, 974 (2020). https://doi.org/10.3390/antiox9100974

    Article  Google Scholar 

  17. Camire, M.E., Kubow, S., Donnelly, D.J.: Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49, 823–840 (2009). https://doi.org/10.1080/10408390903041996

    Article  Google Scholar 

  18. Burlingame, B., Mouillé, B., Charrondière, R.: Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 22, 494–502 (2009). https://doi.org/10.1016/j.jfca.2009.09.001

    Article  Google Scholar 

  19. Galhano dos Santos, R., Ventura, P., Bordado, J.C., Mateus, M.M.: Valorizing potato peel waste: an overview of the latest publications. Rev. Environ. Sci. Biotechnol. 15, 585–592 (2016). https://doi.org/10.1007/s11157-016-9409-7

    Article  Google Scholar 

  20. Ezekiel, R., Singh, N., Sharma, S., Kaur, A.: Beneficial phytochemicals in potato—a review. Food Res. Int. 50, 487–496 (2013). https://doi.org/10.1016/j.foodres.2011.04.025

    Article  Google Scholar 

  21. Singh, B., Singh, J., Singh, J.P., Kaur, A., Singh, N.: Phenolic compounds in potato (Solanum tuberosum L.) peel and their health promoting activities. Int. J. Food Sci. Technol. 55, 273–2281 (2019). https://doi.org/10.1111/ijfs.14361

    Article  Google Scholar 

  22. Salem, M.A., Yoshida, T., Perez de Souza, L., Alseekh, S., Bajdzienko, K., Fernie, A.R., Giavalisco, P.: An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 103, 1614–1632 (2020). https://doi.org/10.1111/tpj.14800

    Article  Google Scholar 

  23. Amado, I.R., Franco, D., Sánchez, M., Zapata, C., Vázquez, J.A.: Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 165, 290–299 (2014). https://doi.org/10.1016/j.foodchem.2014.05.103

    Article  Google Scholar 

  24. Rodríguez-Martínez, B., Gullón, B., Yáñez, R.: Identification and recovery of valuable bioactive compounds from potato peels: a comprehensive review. Antioxidants (Basel) 10, 1630 (2021). https://doi.org/10.3390/antiox10101630

    Article  Google Scholar 

  25. Slimestad, R., Fossen, T., Vågen, I.M.: Onions: a source of unique dietary flavonoids. J. Agric. Food Chem. 55, 10067–10080 (2007). https://doi.org/10.1021/jf0712503

    Article  Google Scholar 

  26. Vojvodić Cebin, A., Šeremet, D., Mandura, A., Martinić, A., Komes, D.: Onion solid waste as a potential source of functional food ingredients. Eng. Power: Bull. Croat. Acad. Eng. 15, 7–13 (2020)

    Google Scholar 

  27. Donner, H., Gao, L., Mazza, G.: Separation and characterization of simple and malonylated anthocyanins in red onions, Allium cepa L. Food Res. Int. 30, 637–643 (1997). https://doi.org/10.1016/S0963-9969(98)00011-8

    Article  Google Scholar 

  28. Fossen, T., Andersen, Ø.M.: Anthocyanins from red onion, Allium cepa, with novel aglycone. Phytochemistry 62, 1217–1220 (2003). https://doi.org/10.1016/S0031-9422(02)00746-X

    Article  Google Scholar 

  29. Fossen, T., Andersen, Ø., Øvstedal, D., Pedersen, A., Raknes, Å.: Characteristic anthocyanin pattern from onions and other allium spp. J. Food Sci. 61, 703–706 (2006). https://doi.org/10.1111/j.1365-2621.1996.tb12185.x

    Article  Google Scholar 

  30. Benítez, V., Mollá, E., Martín-Cabrejas, M.A., Aguilera, Y., López-Andréu, F.J., Cools, K., Terry, L.A., Esteban, R.M.: Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 66, 48–57 (2011). https://doi.org/10.1007/s11130-011-0212-x

    Article  Google Scholar 

  31. Khiari, Z., Makris, D.P.: Stability and transformation of major flavonols in onion (Allium cepa) solid wastes. J. Food Sci. Technol. 49, 489–494 (2012). https://doi.org/10.1007/s13197-010-0201-3

    Article  Google Scholar 

  32. Albishi, T., John, J., Al-Khalifa, A., Shahidi, F.: Antioxidative phenolic constituents of skins of onion varieties and their activities. J. Funct. Foods 5, 1191–1203 (2013). https://doi.org/10.1016/j.jff.2013.04.002

    Article  Google Scholar 

  33. Kim, J., Kim, J.S., Park, E.: Cytotoxic and anti-inflammatory effects of onion peel extract on lipopolysaccharide stimulated human colon carcinoma cells. Food Chem. Toxicol. 62, 199–204 (2013). https://doi.org/10.1016/j.fct.2013.08.045

    Article  Google Scholar 

  34. Hassan, N., Sayed, H., Abd-El-Khalek, M.: The effect of using onion skin powder as a source of dietary fiber and antioxidants on properties of dried and fried noodles. Curr. Sci. Int. 3, 468–475 (2014)

    Google Scholar 

  35. Katsampa, P., Valsamedou, E., Grigorakis, S., Makris, D.P.: A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box-Behnken experimental design and kinetics. Ind. Crops Prod. 77, 535–543 (2015). https://doi.org/10.1016/j.indcrop.2015.09.039

    Article  Google Scholar 

  36. Nile, S.H., Nile, A.S., Keum, Y.S., Sharma, K.: Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 235, 119–126 (2017). https://doi.org/10.1016/j.foodchem.2017.05.043

    Article  Google Scholar 

  37. Burri, S.C.M., Ekholm, A., Håkansson, Å., Tornberg, E., Rumpunen, K.: Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. J. Funct. Foods 38, 119–127 (2017). https://doi.org/10.1016/j.jff.2017.09.003

    Article  Google Scholar 

  38. Nile, A., Nile, S.H., Kim, D.H., Keum, Y.S., Seok, P.G., Sharma, K.: Valorization of onion solid waste and their flavonols for assessment of cytotoxicity, enzyme inhibitory and antioxidant activities. Food Chem. Toxicol. 119, 281–289 (2018). https://doi.org/10.1016/j.fct.2018.02.056

    Article  Google Scholar 

  39. Pucciarini, L., Ianni, F., Petesse, V., Pellati, F., Brighenti, V., Volpi, C., Gargaro, M., Natalini, B., Clementi, C., Sardella, R.: Onion (Allium cepa L.) skin: a rich resource of biomolecules for the sustainable production of colored biofunctional textiles. Molecules 24, 634 (2019). https://doi.org/10.3390/molecules24030634

    Article  Google Scholar 

  40. Campone, L., Celano, R., Piccinelli, A.L., Pagano, I., Carabetta, S., Sanzo, R., Russo, M., Ibáñez, E., Cifuentes, A., Rastrelli, L.: Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.07.042

    Article  Google Scholar 

  41. Zhang, J., Celli, G.B., Brooks, M.S.: Chapter 1 natural sources of anthocyanins. In: Celli, G.B., Brooks, M.S. (eds.) Anthocyanins from natural sources: exploiting targeted delivery for improved health, pp. 1–33. The Royal Society of Chemistry, London (2019). https://doi.org/10.1039/9781788012614-00001

    Chapter  Google Scholar 

  42. Fredotović, Ž, Puizina, J., Nazlić, M., Maravić, A., Ljubenkov, I., Soldo, B., Vuko, E., Bajić, D.: Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of Allium × cornutum clementi and two varieties of Allium cepa L. Peel Extracts Plants 10, 832 (2021). https://doi.org/10.3390/plants10050832

    Article  Google Scholar 

  43. Ciardi, M., Ianni, F., Sardella, R., Di Bona, S., Cossignani, L., Germani, R., Tiecco, M., Clementi, C.: Effective and selective extraction of quercetin from onion (Allium cepa L.) skin waste using water dilutions of acid-based deep eutectic solvents. Materials 14, 6465 (2021). https://doi.org/10.3390/ma14216465

    Article  Google Scholar 

  44. Nile, A., Gansukh, E., Park, G.S., Kim, D.H., Hariram Nile, S.: Novel insights on the multi-functional properties of flavonol glucosides from red onion (Allium cepa L.) solid waste - In vitro and in silico approach. Food Chem. 335, 127650 (2021). https://doi.org/10.1016/j.foodchem.2020.127650

    Article  Google Scholar 

  45. Marefati, N., Ghorani, V., Shakeri, F., Boskabady, M., Kianian, F., Rezaee, R., Boskabady, M.H.: A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharm. Biol. 59, 287–302 (2021). https://doi.org/10.1080/13880209.2021.1874028

    Article  Google Scholar 

  46. Celano, R., Docimo, T., Piccinelli, A.L., Gazzerro, P., Tucci, M., Di Sanzo, R., Carabetta, S., Campone, L., Russo, M., Rastrelli, L.: Onion peel: turning a food waste into a resource. Antioxidants (Basel) 10, 304 (2021). https://doi.org/10.3390/antiox10020304

    Article  Google Scholar 

  47. Osojnik Črnivec, I.G., Skrt, M., Šeremet, D., Sterniša, M., Farčnik, D., Štrumbelj, E., Poljanšek, A., Cebin, N., Pogačnik, L., Smole Možina, S., Humar, M., Komes, D., Poklar Ulrih, N.: Waste streams in onion production: bioactive compounds, quercetin and use of antimicrobial and antioxidative properties. Waste Manag. 126, 476–486 (2021). https://doi.org/10.1016/j.wasman.2021.03.033

    Article  Google Scholar 

  48. Navarre, D.A., Pillai, S.S., Shakya, R., Holden, M.J.: HPLC profiling of phenolics in diverse potato genotypes. Food Chem. 127, 34–41 (2011). https://doi.org/10.1016/j.foodchem.2010.12.080

    Article  Google Scholar 

  49. Kanatt, S.R., Chander, R., Radhakrishna, P., Sharma, A.: Potato peel extract-a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J. Agric. Food Chem. 53, 1499–1504 (2005). https://doi.org/10.1021/jf048270e

    Article  Google Scholar 

  50. Furrer, A.N., Chegeni, M., Ferruzzi, M.G.: Impact of potato processing on nutrients, phytochemicals, and human health. Crit. Rev. Food Sci. Nutr. 58, 146–168 (2018). https://doi.org/10.1080/10408398.2016.1139542

    Article  Google Scholar 

  51. Wijngaard, H.H., Ballay, M., Brunton, N.: The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 133, 1123–1130 (2012). https://doi.org/10.1016/j.foodchem.2011.01.136

    Article  Google Scholar 

  52. Onyeneho, S.N., Hettiarachchy, N.S.: Antioxidant activity, fatty acids and phenolic acids compositions of potato peels. J. Sci. Food Agric. 62, 345–350 (1993). https://doi.org/10.1002/jsfa.2740620406

    Article  Google Scholar 

  53. De Sotillo, D.R., Hadley, M., Holm, E.T.: Phenolics in aqueous potato peel extract: extraction, identification and degradation. J. Food Sci. 59, 649–651 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb05584.x

    Article  Google Scholar 

  54. Lewis, C.E., Walker, J.R.L., Lancaster, J.E., Sutton, K.H.: Determination of anthocyanins, flavonoids, and phenolic acids in potatoes. I: coloured cultivars of Solanum tuberosum L. J. Sci. Food Agric. 77, 45–57 (1998). https://doi.org/10.1002/(SICI)1097-0010(199805)77:1%3c45::AID-JSFA1%3e3.0.CO;2-S

    Article  Google Scholar 

  55. Lewis, C.E., Walker, J.R.L., Lancaster, J.E., Sutton, K.H.: Determination of anthocyanins, flavonoids and phenolic acids in potatoes. II: Wild, tuberous Solanum species. J. Sci. Food Agric. 77, 58–63 (1998). https://doi.org/10.1002/(SICI)1097-0010(199805)77:1%3c58::AID-JSFA2%3e3.0.CO;2-J

    Article  Google Scholar 

  56. Brar, A., Bhatia, A.K., Pandey, V., Kumari, P.: Biochemical and phytochemical properties of potato: a review. Chem. Sci. Rev. Lett. 14, 117–129 (2017)

    Google Scholar 

  57. Lewis, C.E., Walker, J.R.L., Lancaster, J.E.: Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L) tubers. J. Sci. Food Agric. 79, 311–316 (1999). https://doi.org/10.1002/(SICI)1097-0010(199902)79:2%3c311::AID-JSFA199%3e3.0.CO;2-Q

    Article  Google Scholar 

  58. Nara, K., Miyoshi, T., Honma, T., Koga, H.: Antioxidative activity of bound-form phenolics in potato peel. Biosci. Biotechnol. Biochem. 70, 1489–1491 (2006). https://doi.org/10.1271/bbb.50552

    Article  Google Scholar 

  59. Jansen, G., Flamme, W.: Coloured potatoes (Solanum tuberosum L.)—Anthocyanin content and tuber quality. Genet. Resour. Crop Evol. 53, 1321 (2006). https://doi.org/10.1007/s10722-005-3880-2

    Article  Google Scholar 

  60. Singh, N., Rajini, P.S.: Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chem. Biol. Interact. 173, 97–104 (2008). https://doi.org/10.1016/j.cbi.2008.03.008

    Article  Google Scholar 

  61. Al-Weshahy, A., Venket Rao, A.: Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 42, 1062–1066 (2009). https://doi.org/10.1016/j.foodres.2009.05.011

    Article  Google Scholar 

  62. Schieber, A., Saldaña, M.D.A.: Potato peels: a source of nutritionally and pharmacologically interesting compounds—A review. Food ERA 198, 23–29 (2009). https://doi.org/10.7939/R33T9DM0H

    Article  Google Scholar 

  63. Mohdaly, A., Sarhan, M., Smetanska, I., Mahmoud, A.: Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric. 90, 218–226 (2010). https://doi.org/10.1002/jsfa.3796

    Article  Google Scholar 

  64. Mori, M., Hayaswi, K., Ohara-Takada, A., Watanuki, H., Katahira, R., Ono, H., Terahara, N.: Anthocyanins from skins and fleshes of potato varieties. Food Sci. Technol. Res. 16, 115–122 (2010). https://doi.org/10.3136/fstr.16.115

    Article  Google Scholar 

  65. Singh, P.P., Saldaña, M.D.A.: Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 44, 2452–2458 (2011). https://doi.org/10.1016/j.foodres.2011.02.006

    Article  Google Scholar 

  66. Samarin, A., Poorazarang, H., Hematyar, N., Elhamirad, A.H.: Phenolics in potato peels: extraction and utilization as natural antioxidants. World Appl. Sci. J. 18, 191–195 (2012). https://doi.org/10.5829/idosi.wasj.2012.18.02.1057

    Article  Google Scholar 

  67. Wu, Z.G., Xu, H.Y., Ma, Q., Cao, Y., Ma, J.N., Ma, C.M.: Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 135, 2425–2429 (2012). https://doi.org/10.1016/j.foodchem.2012.07.019

    Article  Google Scholar 

  68. Albishi, T., John, J.A., Al-Khalifa, A.S., Shahidi, F.: Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 5, 590–600 (2013). https://doi.org/10.1016/j.jff.2012.11.019

    Article  Google Scholar 

  69. Sánchez Maldonado, A.F., Mudge, E., Gänzle, M.G., Schieber, A.: Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 65, 27–34 (2014). https://doi.org/10.1016/j.foodres.2014.06.018

    Article  Google Scholar 

  70. Alvarez, V.H., Cahyadi, J., Xu, D., Saldaña, M.D.A.: Optimization of phytochemicals production from potato peel using subcritical water: experimental and dynamic modeling. J. Supercrit. Fluids. 90, 8–17 (2014). https://doi.org/10.1016/j.supflu.2014.02.013

    Article  Google Scholar 

  71. Rytel, E., Tajner-Czopek, A., Kita, A., Aniołowska, M., Kucharska, A.Z., Sokół-Łętowska, A., Hamouz, K.: Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chem. 161, 224–229 (2014). https://doi.org/10.1016/j.foodchem.2014.04.002

    Article  Google Scholar 

  72. Arun, K.B., Chandran, J., Dhanya, R., Krishna, P., Jayamurthy, P., Nisha, P.: A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci 9, 36–46 (2015). https://doi.org/10.1016/j.fbio.2014.10.003

    Article  Google Scholar 

  73. Hsieh, Y.L., Yeh, Y.H., Lee, Y.T., Huang, C.Y.: Dietary potato peel extract reduces the toxicity of cholesterol oxidation products in rats. J. Funct. Foods 27, 461–471 (2016). https://doi.org/10.1016/j.jff.2016.09.019

    Article  Google Scholar 

  74. Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., Niu, Y.: A Comparative study on total anthocyanin content, composition of anthocyanidin, total phenolic content and antioxidant activity of pigmented potato peel and flesh. Food Sci. Technol. Res. 22, 219–226 (2016). https://doi.org/10.3136/fstr.22.219

    Article  Google Scholar 

  75. Silva-BeltrÁn, N.P., Chaidez-Quiroz, C., López-Cuevas, O., Ruiz-Cruz, S., López-Mata, M.A., Del-Toro-SÁnchez, C.L., Marquez-Rios, E., Ornelas-Paz, J.D.J.: Phenolic compounds of potato peel extracts: their antioxidant activity and protection against human enteric viruses. J. Microbiol. Biotechnol. 27, 234–241 (2017). https://doi.org/10.4014/jmb.1606.06007

    Article  Google Scholar 

  76. Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M.F., Verardo, V.: Phenolic compounds in the potato and its byproducts: an overview. Int. J. Mol. Sci. 17, 835 (2016). https://doi.org/10.3390/ijms17060835

    Article  Google Scholar 

  77. Friedman, M., Kozukue, N., Kim, H.J., Choi, S.H., Mizuno, M.: Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Compos. Anal. 62, 69–75 (2017). https://doi.org/10.1016/j.jfca.2017.04.019

    Article  Google Scholar 

  78. Oertel, A., Matros, A., Hartmann, A., Arapitsas, P., Dehmer, K.J., Martens, S., Mock, H.-P.: Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 246, 281–297 (2017). https://doi.org/10.1007/s00425-017-2718-4

    Article  Google Scholar 

  79. Valiñas, M.A., Lanteri, M.L., Ten Have, A., Andreu, A.B.: Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem. 229, 837–846 (2017). https://doi.org/10.1016/j.foodchem.2017.02.150

    Article  Google Scholar 

  80. Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M.: Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1361779 (2017). https://doi.org/10.1080/16546628.2017.1361779

    Article  Google Scholar 

  81. Riciputi, Y., Diaz de Cerio, E., Akyol, H., Capanoglu, E., Cerretani, L., Caboni, M., Verardo, V.: Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem. 269, 258–263 (2018). https://doi.org/10.1016/j.foodchem.2018.06.154

    Article  Google Scholar 

  82. Elkahoui, S., Bartley, G.E., Yokoyama, W.H., Friedman, M.: Dietary supplementation of potato peel powders prepared from conventional and organic russet and non-organic gold and red potatoes reduces weight gain in mice on a high-fat diet. J. Agric. Food Chem. 66, 6064–6072 (2018). https://doi.org/10.1021/acs.jafc.8b01987

    Article  Google Scholar 

  83. Javed, A., Ahmad, A., Tahir, A., Shabbir, U., Nouman, M., Hameed, A., Javed, A., Ahmad, A., Tahir, A., Shabbir, U., Nouman, M., Hameed, A.: Potato peel waste-its nutraceutical, industrial and biotechnological applications. Agric. Inf. Manag. Std. 4, 807–823 (2019). https://doi.org/10.3934/agrfood.2019.3.807

    Article  Google Scholar 

  84. Pacifico, D., Lanzanova, C., Pagnotta, E., Bassolino, L., Mastrangelo, A.M., Marone, D., Matteo, R., Lo Scalzo, R., Balconi, C.: Sustainable use of bioactive compounds from Solanum Tuberosum and Brassicaceae wastes and by-products for crop protection-a review. Molecules 26, 2174 (2021). https://doi.org/10.3390/molecules26082174

    Article  Google Scholar 

  85. Joly, N., Souidi, K., Depraetere, D., Wils, D., Martin, P.: Potato by-products as a source of natural chlorogenic acids and phenolic compounds: extraction characterization, and antioxidant capacity. Molecules 26, 177 (2020). https://doi.org/10.3390/molecules26010177

    Article  Google Scholar 

  86. Sampaio, S.L., Petropoulos, S.A., Dias, M.I., Pereira, C., Calhelha, R.C., Fernandes, Â., Leme, C.M.M., Alexopoulos, A., Santos-Buelga, C., Ferreira, I.C.F.R., Barros, L.: Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chem. 363, 130360 (2021). https://doi.org/10.1016/j.foodchem.2021.130360

    Article  Google Scholar 

  87. Friedman, M., McDonald, G.: Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit. Rev. Plant Sci. 16, 55–132 (1997). https://doi.org/10.1080/07352689709701946

    Article  Google Scholar 

  88. Friedman, M.: Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054, 143–155 (2004). https://doi.org/10.1016/j.chroma.2004.04.049

    Article  Google Scholar 

  89. Nandutu, A., Clifford, M., Howell, N.: Analysis of phenolic compounds in Ugandan sweet potato varieties (NSP, SPK AND TZ). Afr. J. Biochem. Res. 1, 29–36 (2007)

    Google Scholar 

  90. Aziz, A., Randhawa, M.A., Butt, M.S., Asghar, A., Yasin, M., Shibamoto, T.: Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. J. Food Sci. 77, T58-61 (2012). https://doi.org/10.1111/j.1750-3841.2011.02582.x

    Article  Google Scholar 

  91. Hossain, M.B., Rawson, A., Aguiló-Aguayo, I., Brunton, N.P., Rai, D.K.: Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules 20, 8560–8573 (2015). https://doi.org/10.3390/molecules20058560

    Article  Google Scholar 

  92. Ren, F., Nian, Y., Perussello, C.A.: Effect of storage, food processing and novel extraction technologies on onions flavonoid content: a review. Int. Food Res. 132, 108953 (2020). https://doi.org/10.1016/j.foodres.2019.108953

    Article  Google Scholar 

  93. Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B.: Onions–a global benefit to health. Phytother. Res. 16, 603–615 (2002). https://doi.org/10.1002/ptr.1222

    Article  Google Scholar 

  94. Rose, P., Whiteman, M., Moore, P.K., Zhu, Y.Z.: Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep. 22, 351–368 (2005). https://doi.org/10.1039/b417639c

    Article  Google Scholar 

  95. Randle, W., Lancaster, J., Shaw, M., Sutton, K., Hay, R.L., Bussard, M.: Quantifying onion flavor compounds responding to sulfur fertility: sulfur increases levels of alk(en)yl cysteine sulfoxides and biosynthetic intermediates. J. Am. Soc. Hortic. Sci. 120, 1–7 (1995). https://doi.org/10.21273/JASHS.120.6.1075

    Article  Google Scholar 

  96. Mallor, C., Thomas, B.: Resource allocation and the origin of flavour precursors in onion bulbs. J. Hortic. Sci. Biotechnol. 83, 191–198 (2008). https://doi.org/10.1080/14620316.2008.11512369

    Article  Google Scholar 

  97. Galdón, B.R., González, R.O., Rodríguez, E.R., Romero, C.D.: Comparison of mineral and trace element contents in onion cultivars (Allium cepa L.). J. Sci. Food Agric. 88, 1554–1561 (2008). https://doi.org/10.1002/jsfa.3250

    Article  Google Scholar 

  98. Bello, M.O., Olabanji, I.O., Abdul-Hammed, M., Okunade, T.D.: Characterization of domestic onion wastes and bulb (Allium cepa L.): fatty acids and metal contents. Int. Food Res. J. 20, 2153–2158 (2013)

    Google Scholar 

  99. Bhosale, Y.: Studies on assessment of safety and nutritional quality of shallot waste fractions. J. Food Process. Preserv. 45, e15147 (2020). https://doi.org/10.1111/jfpp.15147

    Article  Google Scholar 

  100. Liu, Y.W., Han, C.H., Lee, M.H., Hsu, F.L., Hou, W.C.: Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro. J. Agric. Food Chem. 51, 4389–4393 (2003). https://doi.org/10.1021/jf030016j

    Article  Google Scholar 

  101. Arapoglou, D., Varzakas, T., Vlyssides, Α, Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902 (2010). https://doi.org/10.1016/j.wasman.2010.04.017

    Article  Google Scholar 

  102. Singh, A., Sabally, K., Kubow, S., Donnelly, D.J., Gariepy, Y., Orsat, V., Raghavan, G.S.V.: Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 16, 2218–2232 (2011). https://doi.org/10.3390/molecules16032218

    Article  Google Scholar 

  103. Liang, S., McDonald, A.G., Coats, E.R.: Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag. 34, 2022–2027 (2014). https://doi.org/10.1016/j.wasman.2014.07.009

    Article  Google Scholar 

  104. Jeddou, K.B., Chaari, F., Maktouf, S., Nouri-Ellouz, O., Helbert, C.B., Ghorbel, R.E.: Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 205, 97–105 (2016). https://doi.org/10.1016/j.foodchem.2016.02.108

    Article  Google Scholar 

  105. Ben Jeddou, K., Bouaziz, F., Zouari-Ellouzi, S., Chaari, F., Ellouz-Chaabouni, S., Ellouz-Ghorbel, R., Nouri-Ellouz, O.: Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 217, 668–677 (2017). https://doi.org/10.1016/j.foodchem.2016.08.081

    Article  Google Scholar 

  106. Choi, S.H., Kozukue, N., Kim, H.J., Friedman, M.: Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavonoid content and antioxidative properties of potato tubers, peels, and cortexes (pulps). J. Food Compos. Anal. 50, 77–87 (2016). https://doi.org/10.1016/j.jfca.2016.05.011

    Article  Google Scholar 

  107. Kumari, B., Tiwari, B.K., Hossain, M.B., Rai, D.K., Brunton, N.P.: Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. Int. J. Food Sci. Technol. 52, 1432–1439 (2017). https://doi.org/10.1111/ijfs.13404

    Article  Google Scholar 

  108. Susarla, N.: Benefits of potato peels. Act. Sci. Nutr. 3, 147–153 (2019). https://doi.org/10.31080/ASNH.2019.03.0418

    Article  Google Scholar 

  109. Grigelmo-Miguel, N., Martı́n-Belloso, O.: Characterization of dietary fiber from orange juice extraction. Food Res Int. 31, 355–361 (1998). https://doi.org/10.1016/S0963-9969(98)00087-8

    Article  Google Scholar 

  110. Grigelmo-Miguel, N., Martı́n-Belloso, O.: Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT - Food Sci. Technol. 32, 503–508 (1999). https://doi.org/10.1006/fstl.1999.0587

    Article  Google Scholar 

  111. Benítez, V., Mollá, E., Martín-Cabrejas, M.A., Aguilera, Y., López-Andréu, F.J., Esteban, R.M.: Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem. 127, 501–507 (2011). https://doi.org/10.1016/j.foodchem.2011.01.031

    Article  Google Scholar 

  112. Jaime, L., Mollá, E., Fernández, A., Martín-Cabrejas, M.A., López-Andréu, F.J., Esteban, R.M.: Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J. Agric. Food Chem. 50, 122–128 (2002). https://doi.org/10.1021/jf010797t

    Article  Google Scholar 

  113. Jaime, L., Martínez, F., Martín-Cabrejas, M.A., Mollá, E., López-Andréu, F.J., Waldron, K.W., Esteban, R.M.: Study of total fructan and fructooligosaccharide content in different onion tissues. J. Sci. Food Agric. 81, 177–182 (2001). https://doi.org/10.1002/1097-0010(20010115)81:2%3c177::AID-JSFA796%3e3.0.CO;2-9

    Article  Google Scholar 

  114. Ifesan, B.: Chemical composition of onion peel (Allium cepa ) and its ability to serve as a preservative in cooked beef. Int. J. Sci. Res. Methodol 7, 25–34 (2017)

    Google Scholar 

  115. Michalak-Majewska, M., Teterycz, D., Muszyński, S., Radzki, W., Sykut-Domańska, E.: Influence of onion skin powder on nutritional and quality attributes of wheat pasta. PLoS ONE 15, e0227942 (2020). https://doi.org/10.1371/journal.pone.0227942

    Article  Google Scholar 

  116. Fossen, T., Andersen, Ø.M., Øvstedal, D.O., Pedersen, A.T., Raknes, Å.: Characteristic anthocyanin pattern from onions and other Allium spp. J. Food Sci. 61, 703–706 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb12185.x

    Article  Google Scholar 

  117. Fredotović, Ž, Šprung, M., Soldo, B., Ljubenkov, I., Budić-Leto, I., Bilušić, T., Čikeš-Čulić, V., Puizina, J.: Chemical composition and biological activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 22, E448 (2017). https://doi.org/10.3390/molecules22030448

    Article  Google Scholar 

  118. Nile, A., Nile, S.H., Cespedes-Acuña, C.L., Oh, J.W.: Spiraeoside extracted from red onion skin ameliorates apoptosis and exerts potent antitumor, antioxidant and enzyme inhibitory effects. Food Chem. Toxicol. 154, 112327 (2021). https://doi.org/10.1016/j.fct.2021.112327

    Article  Google Scholar 

  119. Zhang, Q.W., Lin, L.G., Ye, W.C.: Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 13, 20 (2018). https://doi.org/10.1186/s13020-018-0177-x

    Article  Google Scholar 

  120. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A.: Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel) 6, 42 (2017). https://doi.org/10.3390/plants6040042

    Article  Google Scholar 

  121. Kaur, P., Gupta, R.C., Dey, A., Malik, T., Pandey, D.: Optimization of harvest and extraction factors by full factorial design for the improved yield of C-glucosyl xanthone mangiferin from Swertia chirata. Sci. Rep. 11, 16346 (2021). https://doi.org/10.1038/s41598-021-95663-7

    Article  Google Scholar 

  122. Soquetta, M.B., de Terra, L.M., Bastos, C.P.: Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA J. Food (2018). https://doi.org/10.1080/19476337.2017.1411978

    Article  Google Scholar 

  123. Calcio Gaudino, E., Colletti, A., Grillo, G., Tabasso, S., Cravotto, G.: Emerging processing technologies for the recovery of valuable bioactive compounds from potato peels. Foods 9, 1598 (2020). https://doi.org/10.3390/foods9111598

    Article  Google Scholar 

  124. Kumar, M., Barbhai, M.D., Hasan, M., Punia, S., Dhumal, S., Radha, N., Rais, D., Chandran, R., Pandiselvam, A., Kothakota, M., Tomar, V., Satankar, M., Senapathy, T., Anitha, A., Dey, A.A.S., Sayed, F.M., Gadallah, R., Amarowicz, M.M.: Onion (Allium cepa L.) peels: a review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 146, 112498 (2022). https://doi.org/10.1016/j.biopha.2021.112498

    Article  Google Scholar 

  125. Friedman, M., Huang, V., Quiambao, Q., Noritake, S., Liu, J., Kwon, O., Chintalapati, S., Young, J., Levin, C.E., Tam, C., Cheng, L.W., Land, K.M.: Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J. Agric. Food Chem. 66, 7942–7947 (2018). https://doi.org/10.1021/acs.jafc.8b01726

    Article  Google Scholar 

  126. Gebrechristos, H.Y., Ma, X., Xiao, F., He, Y., Zheng, S., Oyungerel, G., Chen, W.: Potato peel extracts as an antimicrobial and potential antioxidant in active edible film. Food Sci. Nutr. 8, 6338–6345 (2020). https://doi.org/10.1002/fsn3.1119

    Article  Google Scholar 

  127. Koduvayur Habeebullah, S.F., Nielsen, N.S., Jacobsen, C.: Antioxidant activity of potato peel extracts in a fish-rapeseed oil mixture and in oil-in-water emulsions. J. Am. Oil Chem. Soc. 87, 1319–1332 (2010). https://doi.org/10.1007/s11746-010-1611-0

    Article  Google Scholar 

  128. Singh, N., Rajini, P.S.: Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85, 611–616 (2004). https://doi.org/10.1016/j.foodchem.2003.07.003

    Article  Google Scholar 

  129. Hossain, M.B., Tiwari, B.K., Gangopadhyay, N., O’Donnell, C.P., Brunton, N.P., Rai, D.K.: Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem. 21, 1470–1476 (2014). https://doi.org/10.1016/j.ultsonch.2014.01.023

    Article  Google Scholar 

  130. Zhang, Z., Poojary, M.M., Choudhary, A., Rai, D.K., Lund, M.N., Tiwari, B.K.: Ultrasound processing of coffee silver skin, brewer’s spent grain and potato peel wastes for phenolic compounds and amino acids: a comparative study. J Food Sci Technol. 58, 2273–2282 (2021). https://doi.org/10.1007/s13197-020-04738-2

    Article  Google Scholar 

  131. Cardoso, L.C., Serrano, C.M., Quintero, E.T., López, C.P., Antezana, R.M., Martínez de la Ossa, E.J.: High pressure extraction of antioxidants from solanum stenotomun peel. Molecules 18, 3137–3151 (2013). https://doi.org/10.3390/molecules18033137

    Article  Google Scholar 

  132. Saptarini, N.M., Wardati, Y.: Effect of extraction methods on antioxidant activity of papery skin extracts and fractions of maja cipanas onion (Allium cepa L. var. ascalonicum). Sci World J. 2020, 3280534 (2020). https://doi.org/10.1155/2020/3280534

    Article  Google Scholar 

  133. Lee, H.A., Han, S.J., Hong, S., Kim, D.W., Oh, G.W., Kim, O.: Onion peel water extracts enhance immune status in forced swimming rat model. Lab. Anim. Res. 30, 161–168 (2014). https://doi.org/10.5625/lar.2014.30.4.161

    Article  Google Scholar 

  134. Lee, S.M., Moon, J., Do, H.J., Chung, J.H., Lee, K.H., Cha, Y.J., Shin, M.J.: Onion peel extract increases hepatic low-density lipoprotein receptor and ATP-binding cassette transporter A1 messenger RNA expressions in Sprague-Dawley rats fed a high-fat diet. Nutr. Res. 32, 210–217 (2012). https://doi.org/10.1016/j.nutres.2012.01.004

    Article  Google Scholar 

  135. Imeneo, V., De Bruno, A., Piscopo, A., Romeo, R., Poiana, M.: Valorization of ‘Rossa di Tropea’ onion waste through green recovery techniques of antioxidant compounds. Sustainability 14, 4387 (2022). https://doi.org/10.3390/su14084387

    Article  Google Scholar 

  136. Jang, M., Asnin, L., Nile, S.H., Keum, Y.S., Kim, H.Y., Park, S.W.: Ultrasound-assisted extraction of quercetin from onion solid wastes. Int. J. Food Sci. Technol. 48, 246–252 (2013). https://doi.org/10.1111/j.1365-2621.2012.03180.x

    Article  Google Scholar 

  137. Jin, E.Y., Lim, S., Park, Y.S., Jang, J.K., Chung, M.S., Park, H., Shim, K.S., Choi, Y.J.: Optimization of various extraction methods for quercetin from onion skin using response surface methodology. Food Sci. Biotechnol. 20, 1727–1733 (2011). https://doi.org/10.1007/s10068-011-0238-8

    Article  Google Scholar 

  138. Benito-Román, Ó., Blanco, B., Sanz, M.T., Beltrán, S.: Subcritical water extraction of phenolic compounds from onion skin wastes (Allium cepa cv.Horcal): effect of temperature and solvent properties. Antioxidants (Basel) 9, E1233 (2020). https://doi.org/10.3390/antiox9121233

    Article  Google Scholar 

  139. Pal, C.B.T., Jadeja, G.C.: Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 99, 1969–1979 (2019). https://doi.org/10.1002/jsfa.9395

    Article  Google Scholar 

  140. Pal, C.B.T., Jadeja, G.C.: Microwave-assisted deep eutectic solvent extraction of phenolic antioxidants from onion (Allium cepa L.) peel: a Box-Behnken design approach for optimization. J. Food Sci. Technol. 56, 4211–4223 (2019). https://doi.org/10.1007/s13197-019-03891-7

    Article  Google Scholar 

  141. Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C.J., Valko, M.: Targeting free radicals in oxidative stress-related human diseases, trends in pharmacology. Science 38, 592–607 (2017). https://doi.org/10.1016/j.tips.2017.04.005

    Article  Google Scholar 

  142. Li, S., Li, S.K., Gan, R.Y., Song, F.L., Kuang, L., Li, H.B.: Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 51, 289–298 (2013). https://doi.org/10.1016/j.indcrop.2013.09.017

    Article  Google Scholar 

  143. Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., Li, H.B.: Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 129, 345–350 (2011). https://doi.org/10.1016/j.foodchem.2011.04.079

    Article  Google Scholar 

  144. Fu, L., Xu, B.T., Gan, R.Y., Zhang, Y., Xu, X.R., Xia, E.Q., Li, H.B.: Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 12, 2112–2124 (2011). https://doi.org/10.3390/ijms12042112

    Article  Google Scholar 

  145. Song, F.L., Gan, R.Y., Zhang, Y., Xiao, Q., Kuang, L., Li, H.B.: Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. Int. J. Mol. Sci. 11, 2362–2372 (2010). https://doi.org/10.3390/ijms11062362

    Article  Google Scholar 

  146. Kim, K.A., Yim, J.E.: Antioxidative activity of onion peel extract in obese women: a randomized double-blind, placebo controlled study. J. Cancer Preview 20, 202–207 (2015). https://doi.org/10.1530/JCP.2015.20.3.202

    Article  Google Scholar 

  147. Joung, E.M., Jung, K.H.: Antioxidant activity of onion (Allium cepa L.) peel extracts obtained as onion byproducts. Korean J. Food Sci. Technol. 46, 364–368 (2014)

    Article  Google Scholar 

  148. Chernukha, I., Fedulova, L., Vasilevskaya, E., Kulikovskii, A., Kupaeva, N., Kotenkova, E.: Antioxidant effect of ethanolic onion (Allium cepa) husk extract in ageing rats, Saudi. J Biol Sci. 28, 2877–2885 (2021). https://doi.org/10.1016/j.sjbs.2021.02.020

    Article  Google Scholar 

  149. Sharma, K., Assefa, A.D., Kim, S., Ko, E.Y., Lee, E.T., Park, S.W.: Evaluation of total phenolics, flavonoids and antioxidant activity of 18 Korean onion cultivars: a comparative study. J. Sci. Food Agric. 94, 1521–1529 (2014). https://doi.org/10.1002/jsfa.6450

    Article  Google Scholar 

  150. Verzelloni, E., Tagliazucchi, D., Conte, A.: Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem. 2, 564–571 (2007). https://doi.org/10.1016/j.foodchem.2007.04.014

    Article  Google Scholar 

  151. Lee, K., Kim, K.T., Kim, H.J., Chung, M.S., Chang, P.S., Park, H., Paik, H.D.: Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water, and subcritical water extraction. Food Sci. Biotechnol. 23, 615–621 (2014). https://doi.org/10.1007/s10068-014-0084-6

    Article  Google Scholar 

  152. Chen, M., Meng, H., Zhao, Y., Chen, F., Yu, S.: Antioxidant and in vitro anticancer activities of phenolics isolated from sugar beet molasses. BMC Complement. Altern. Med. 15, 313 (2015). https://doi.org/10.1186/s12906-015-0847-5

    Article  Google Scholar 

  153. Piechowiak, T., Balawejder, M.: Onion skin extract as a protective agent against oxidative stress in Saccharomyces cerevisiae induced by cadmium. J. Food Biochem. 43, e12872 (2019). https://doi.org/10.1111/jfbc.12872

    Article  Google Scholar 

  154. Fuentes, J., de Camargo, A.C., Atala, E., Gotteland, M., Olea-Azar, C., Speisky, H.: Quercetin oxidation metabolite present in onion peel protects caco-2 cells against the oxidative stress, NF-kB activation, and loss of epithelial barrier function induced by NSAIDs. J. Agric. Food Chem. 69, 2157–2167 (2021). https://doi.org/10.1021/acs.jafc.0c07085

    Article  Google Scholar 

  155. Fuentes, J., Arias-Santé, M.F., Atala, E., Pastene, E., Kogan, M.J., Speisky, H.: Low nanomolar concentrations of a quercetin oxidation product, which naturally occurs in onion peel, protect cells against oxidative damage. Food Chem. 314, 126166 (2020). https://doi.org/10.1016/j.foodchem.2020.126166

    Article  Google Scholar 

  156. Park, J., Kim, J., Kim, M.K.: Onion flesh and onion peel enhance antioxidant status in aged rats. J. Nutr. Sci. Vitaminol. (Tokyo) 53, 21–29 (2007). https://doi.org/10.3177/jnsv.53.21

    Article  Google Scholar 

  157. Jeddou, K., Bouaziz, F., Claire, B., Nouri-Ellouz, O., Maktouf, S., Chaabouni Ellouz, S., Ghorbel, R.: Structural, functional, and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 112, 1146–1155 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.004

    Article  Google Scholar 

  158. Kang, B.K., Kim, K.B.W.R., Ahn, N.K., Choi, Y.U., Kim, M.J., Bark, S.W., Pak, W.M., Kim, B.R., Park, J.H., Bae, N.Y., Ahn, D.H.: Anti-inflammatory effect of onion (Allium cepa) peel hot water extract in vitro and in vivo. Korean Soc. Biotechnol. Bioeng. J. 30, 148–154 (2015). https://doi.org/10.7841/ksbbj.2015.30.4.148

    Article  Google Scholar 

  159. Phukan, K., Devi, R., Chowdhury, D.: Green synthesis of gold nano-bioconjugates from onion peel extract and evaluation of their antioxidant, anti-inflammatory, and cytotoxic studies. ACS Omega 28, 17811–17823 (2021). https://doi.org/10.1021/acsomega.1c00861

    Article  Google Scholar 

  160. Wahyudi, I., Ramadhan, F., Wijaya, R., Ardhani, R., Utami, T.: Analgesic, anti-inflammatory and anti-biofilm-forming activity of potato (Solanum tuberosum L.) peel extract. Indones. J. Cancer Chemoprevention 11, 30 (2020). https://doi.org/10.1499/indonesianjcanchemoprev11iss1pp30-35

    Article  Google Scholar 

  161. Li, Y., Zhang, J.J., Xu, D.P., Zhou, T., Zhou, Y., Li, S., Li, H.B.: Bioactivities and Health Benefits of Wild Fruits. Int. J. Mol. Sci. 17, 1258 (2016). https://doi.org/10.3390/ijms17081258

    Article  Google Scholar 

  162. El-Ashmawy, N.E., Khedr, N.F., El-Bahrawy, H.A., Abo Mansour, H.E.: Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms. Eur. J. Nutr. 57, 981–989 (2018). https://doi.org/10.1007/s00394-017-1382-6

    Article  Google Scholar 

  163. Mutoh, M., Takahashi, M., Fukuda, K., Komatsu, H., Enya, T., Matsushima-Hibiya, Y., Mutoh, H., Sugimura, T., Wakabayashi, K.: Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn. J. Cancer Res. 91, 686–691 (2000). https://doi.org/10.1111/j.1349-7006.2000.tb01000.x

    Article  Google Scholar 

  164. Corzo-Martínez, M., Corzo, N., Villamiel, M.: Biological properties of onions and garlic. Trends Food Sci. Technol. 18, 609–625 (2007). https://doi.org/10.1016/j.tifs.2007.07.011

    Article  Google Scholar 

  165. Majhenič, L., Bezjak, M., Knez, Ž: Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L) skin and edible part extracts. Chem. Biochem. Eng. Q. 23, 435–444 (2009)

    Google Scholar 

  166. Santas, J., Almajano, M.P., Carbó, R.: Antimicrobial and antioxidant activity of crude onion (Allium cepa L.) extracts. Int. J. Food Sci. Technol. 45, 403–409 (2010). https://doi.org/10.1111/j.1365-2621.2009.02169.x

    Article  Google Scholar 

  167. Xiao, J.: Dietary flavonoid aglycones and their glycosides: which show better biological significance? Crit. Rev. Food Sci. Nutr. 57, 1874–1905 (2017). https://doi.org/10.1080/10408398.2015.1032400

    Article  Google Scholar 

  168. Ramos, F.A., Takaishi, Y., Shirotori, M., Kawaguchi, Y., Tsuchiya, K., Shibata, H., Higuti, T., Tadokoro, T., Takeuchi, M.: Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J. Agric. Food Chem. 54, 3551–3557 (2006). https://doi.org/10.1021/jf060251c

    Article  Google Scholar 

  169. Blair, M.: Diabetes mellitus review. Urol. Nurs. 36, 27–36 (2016)

    Article  Google Scholar 

  170. Kobori, M., Masumoto, S., Akimoto, Y., Takahashi, Y.: Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol. Nutr. Food Res. 53, 859–868 (2009). https://doi.org/10.1002/mnfr.200800310

    Article  Google Scholar 

  171. Smith, C., Lombard, K.A., Peffley, E.B., Liu, W.: Genetic Analysis of Quercetin in Onion (Allium cepa L). Tex. J. Agric. Nat. Resour. 16, 24–28 (2003)

    Google Scholar 

  172. Lee, S.K., Hwang, J.Y., Kang, M.J., Kim, Y.M., Jung, S.H., Lee, J.H., Kim, J.C.: Hypoglycemic effect of onion skin extract in animal models of diabetes mellitus. Food Sci. Biotechnol. 17, 130–134 (2008)

    Google Scholar 

  173. Jung, J.Y., Lim, Y., Moon, M.S., Kim, J.Y., Kwon, O.: Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr. Metab. (London) 8, 18 (2011). https://doi.org/10.1186/1743-7075-8-18

    Article  Google Scholar 

  174. Nguyen, M.T.A., Favelyukis, S., Nguyen, A.-K., Reichart, D., Scott, P.A., Jenn, A., Liu-Bryan, R., Glass, C.K., Neels, J.G., Olefsky, J.M.: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007). https://doi.org/10.1074/jbc.M706762200

    Article  Google Scholar 

  175. Masood, S., ur Rehman, A., Bashir, S., El Shazly, M., Imran, M., Khalil, P., Ifthikar, F., Jaffar, H.M., Khursheed, T.: Investigation of the anti-hyperglycemic and antioxidant effects of wheat bread supplemented with onion peel extract and onion powder in diabetic rats. J. Diabetes Metab. Disord. 20, 485–495 (2021). https://doi.org/10.1007/s40200-021-00770-x

    Article  Google Scholar 

  176. Misawa, K., Hashizume, K., Yamamoto, M., Minegishi, Y., Hase, T., Shimotoyodome, A.: Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. J. Nutr. Biochem. 26, 1058–1067 (2015). https://doi.org/10.1016/j.jnutbio.2015.04.014

    Article  Google Scholar 

  177. Moon, J., Do, H.J., Kim, O.Y., Shin, M.J.: Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem. Toxicol. 58, 347–354 (2013). https://doi.org/10.1016/j.fct.2013.05.006

    Article  Google Scholar 

  178. Lee, J.S., Cha, Y.J., Lee, K.H., Yim, J.E.: Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study. Nutr Res Pract. 10, 175–181 (2016). https://doi.org/10.4162/nrp.2016.10.2.175

    Article  Google Scholar 

  179. Ahn, J., Lee, H., Kim, S., Park, J., Ha, T.: The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 373, 545–549 (2008). https://doi.org/10.1016/j.bbrc.2008.06.077

    Article  Google Scholar 

  180. Kjeldsen, S.E.: Hypertension and cardiovascular risk: general aspects. Pharmacol. Res. 129, 95–99 (2018). https://doi.org/10.1016/j.phrs.2017.11.003

    Article  Google Scholar 

  181. Naseri, M.K.G., Arabian, M., Badavi, M., Ahangarpour, A.: Vasorelaxant and hypotensive effects of Allium cepa peel hydroalcoholic extract in rat. Pak. J. Biol. Sci. 11, 1569–1575 (2008). https://doi.org/10.3923/pjbs.2008.1569.1575

    Article  Google Scholar 

  182. Ro, J.Y., Ryu, J.H., Park, H.J., Cho, H.J.: Onion (Allium cepa L.) peel extract has anti-platelet effects in rat platelets. Springerplus 4, 17 (2015). https://doi.org/10.1186/s40064-015-0786-0

    Article  Google Scholar 

  183. Olayeriju, O.S., Olaleye, M.T., Crown, O.O., Komolafe, K., Boligon, A.A., Athayde, M.L., Akindahunsi, A.A.: Ethylacetate extract of red onion (Allium cepa L.) tunic affects hemodynamic parameters in rats. Food Sci. Hum Wellness 4, 115–122 (2015). https://doi.org/10.1016/j.fshw.2015.07.002

    Article  Google Scholar 

  184. Brüll, V., Burak, C., Stoffel-Wagner, B., Wolffram, S., Nickenig, G., Müller, C., Langguth, P., Alteheld, B., Fimmers, R., Naaf, S., Zimmermann, B.F., Stehle, P., Egert, S.: Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Pak. J. Biol. Sci. 114, 1263–1277 (2015). https://doi.org/10.1017/S0007114515002950

    Article  Google Scholar 

  185. Wu, D.: Recycle technology for potato peel waste processing: a review. Procedia Environ. Sci. 31, 103–107 (2016). https://doi.org/10.1016/j.proenv.2016.02.014

    Article  Google Scholar 

  186. Yeung, Y.Y., Hong, S., Corey, E.: A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. J. Am. Chem. Soc. 128, 6310–6311 (2006). https://doi.org/10.1021/ja0616433

    Article  Google Scholar 

  187. Espíndola, K.M.M., Ferreira, R.G., Narvaez, L.E.M., Silva Rosario, A.C.R., da Silva, A.H.M., Silva, A.G.B., Vieira, A.P.O., Monteiro, M.C.: Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 9, 541 (2019). https://doi.org/10.3389/fonc.2019.00541

    Article  Google Scholar 

  188. Gebrechristos, H.Y., Chen, W.: Utilization of potato peel as eco-friendly products: a review. Food Sci. Nutr. 6, 1352–1356 (2018). https://doi.org/10.1002/fsn3.691

    Article  Google Scholar 

  189. Guil-Guerrero, J.L., Ramos, L., Moreno, C., Zúñiga-Paredes, J.C., Carlosama-Yepez, M., Ruales, P.: Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livest. Sci. 189, 32–49 (2016). https://doi.org/10.1016/j.livsci.2016.04.021

    Article  Google Scholar 

  190. Liang, S., McDonald, A.G.: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 62, 8421–8429 (2014). https://doi.org/10.1021/jf5019406

    Article  Google Scholar 

Download references

Funding

MAS is supported by the Academy of Scientific Research and Technology (ASRT-Egypt) under the Joint ASRT-BA Research Grants Program (Grant Number: 1044). Additionally, AZ is funded by the „Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 172116086-SFB 926’’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed A. Salem or Ahmed Zayed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, M.A., Mansour, H.E.A., Mosalam, E.M. et al. Valorization of by-products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications. Waste Biomass Valor 14, 1823–1858 (2023). https://doi.org/10.1007/s12649-022-02027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-02027-x

Keywords

Navigation