Skip to main content
Log in

Advanced extraction and separation approaches for the recovery of dietary flavonoids from plant biomass: A review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

At present, huge attention is implanted on the exploration and distribution of endemic plant biomass, which has dietary flavonoids in different food and livestock supplements manufacturing industries. Dietary flavonoids present in the plant biomass have wide phytotherapeutic properties such as antioxidant, anti-bacterial, anti-viral, and immuno-modulatory. This review aims to analyze and discuss various solvent-based extraction techniques (microwave-assisted extraction, subcritical extraction, and ultrasound-assisted extraction), optimum point and yield of flavonoids from various plant biomass. Furthermore, this article provides a review on separation and purification of flavonoids present in the complex matrix, using various solid-phase extraction (SPE) materials such as C-18 silica nanomaterials and molecularly imprinted polymers (MIPs) and molecularly imprinted membranes (MIMs). Solid-phase extraction (SPE) has been used to quickly analyze the trace elements which are present in the sample matrices network. MIPs and MIMs with suitable recognition sites are employed for the pre-treatment of samples before quantification. The SPE sorbent synthesizing protocol, interactions, characteristics, and effects are discussed. Furthermore, essential performance such as sorption, recovery ratio, and imprinting factor was evaluated based on previous research studies. Together with these, the overall polymerization mechanism of molecularly imprinted materials using monomers, initiator, and cross-linker for the selective separation of dietary flavonoids has been reviewed. Current trends in the molecularly imprinted polymers (MIPs) and molecularly imprinted membranes (MIMs) for effective separation of dietary flavonoids from plant biomass are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anagnostopoulou MA, Kefalas P, Papageorgiou VP et al (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem 94:19–25. https://doi.org/10.1016/j.foodchem.2004.09.047

    Article  Google Scholar 

  2. Barrera-Garcí VD, Gougeon RD, Karbowiak T et al (2008) Role of Wood Macromolecules on Selective Sorption of Phenolic Compounds by Wood. J Agric Food Chem 56:8498–8506. https://doi.org/10.1021/JF801314N

    Article  Google Scholar 

  3. Fernández-Agulló A, Freire MS, Ramírez-López C et al (2021) Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Convers Biorefinery 11:609–618. https://doi.org/10.1007/s13399-019-00598-9

    Article  Google Scholar 

  4. García-Araya JF, Beltrán FJ, Álvarez P, Masa FJ (2003) Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater. Adsorption 9:107–115. https://doi.org/10.1023/A:1024228708675

    Article  Google Scholar 

  5. Li J, Chase HA (2010) Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 27:1493–1510. https://doi.org/10.1039/C0NP00015A

    Article  Google Scholar 

  6. Satchanska G (2022) Antibacterial activity of plant polyphenols. In: Vijayakumar R, Raja SSS (eds) Secondary metabolites - trends and reviews. IntechOpen, London. https://doi.org/10.5772/intechopen.101664

  7. Kang J, Xie C, Li Z et al (2011) Flavonoids from acai (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem 128:152–157. https://doi.org/10.1016/j.foodchem.2011.03.011

    Article  Google Scholar 

  8. Rusanov K, Garo E, Rusanova M et al (2014) Recovery of Polyphenols from Rose Oil Distillation Wastewater Using Adsorption Resins – A Pilot Study. Planta Med 80:1657–1664. https://doi.org/10.1055/S-0034-1383145

    Article  Google Scholar 

  9. Ma YQ, Chen JC, Liu DH, Ye XQ (2008) Effect of ultrasonic treatment on the total phenolic and antioxidant activity of extracts from citrus peel. J Food Sci 73. https://doi.org/10.1111/j.1750-3841.2008.00908.x

  10. Tungmunnithum D, Drouet S, Lorenzo JM (2021) Hano C (2021) Green Extraction of Antioxidant Flavonoids from Pigeon Pea (Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Mol 26:7557. https://doi.org/10.3390/MOLECULES26247557

    Article  Google Scholar 

  11. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835. https://doi.org/10.1016/J.FOODCHEM.2010.12.026

    Article  Google Scholar 

  12. Sergent T, Piront N, Meurice J et al (2010) Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact 188:659–667. https://doi.org/10.1016/j.cbi.2010.08.007

    Article  Google Scholar 

  13. Snyder SM, Reber JD, Freeman BL et al (2011) Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity. Nutr Res 31:519–526. https://doi.org/10.1016/j.nutres.2011.06.006

    Article  Google Scholar 

  14. Barros RGC, Andrade JKS, Denadai M et al (2017) Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res Int 102:84–92. https://doi.org/10.1016/j.foodres.2017.09.082

    Article  Google Scholar 

  15. Gan CY, Latiff AA (2011) Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem 124:1277–1283. https://doi.org/10.1016/j.foodchem.2010.07.074

    Article  Google Scholar 

  16. Prakash Maran J, Manikandan S, Vigna Nivetha C, Dinesh R (2017) Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab J Chem 10:S1145–S1157. https://doi.org/10.1016/j.arabjc.2013.02.007

    Article  Google Scholar 

  17. de Elguea-Culebras GO, Bravo EM, Sánchez-Vioque R (2022) Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market – A review. Ind Crops Prod 175:114261. https://doi.org/10.1016/j.indcrop.2021.114261

    Article  Google Scholar 

  18. Michalkiewicz A, Biesaga M, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chromatogr A 1187:18–24. https://doi.org/10.1016/J.CHROMA.2008.02.001

    Article  Google Scholar 

  19. Li X, Chen F, Li S et al (2016) An efficient homogenate-microwave-assisted extraction of flavonols and anthocyanins from blackcurrant marc: Optimization using combination of Plackett-Burman design and Box-Behnken design. Ind Crops Prod 94:834–847. https://doi.org/10.1016/j.indcrop.2016.09.063

    Article  Google Scholar 

  20. Chidambara Murthy KN, Jayaprakasha GK, Singh RP (2002) Studies on Antioxidant Activity of Pomegranate ( Punica granatum ) Peel Extract Using in Vivo Models. J Agric Food Chem 50:4791–4795. https://doi.org/10.1021/jf0255735

    Article  Google Scholar 

  21. Koyu H, Kazan A, Demir S et al (2018) Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 248:183–191. https://doi.org/10.1016/j.foodchem.2017.12.049

    Article  Google Scholar 

  22. Karabegović IT, Stojičević SS, Veličković DT et al (2013) Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Sep Purif Technol 120:429–436. https://doi.org/10.1016/j.seppur.2013.10.021

    Article  Google Scholar 

  23. Jesus MS, Genisheva Z, Romaní A et al (2019) Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind Crops Prod 132:99–110. https://doi.org/10.1016/j.indcrop.2019.01.070

    Article  Google Scholar 

  24. Pinela J, Prieto MA, Carvalho AM et al (2016) Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Sep Purif Technol 164:114–124. https://doi.org/10.1016/j.seppur.2016.03.030

    Article  Google Scholar 

  25. Zheng X, Xu X, Liu C et al (2013) Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep Purif Technol 104:17–25. https://doi.org/10.1016/j.seppur.2012.11.011

    Article  Google Scholar 

  26. Kaderides K, Papaoikonomou L, Serafim M, Goula AM (2019) Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process - Process Intensif 137:1–11. https://doi.org/10.1016/j.cep.2019.01.006

    Article  Google Scholar 

  27. Kırbaşlar Şİ, Şahin S (2021) Recovery of bioactive ingredients from biowaste of olive tree (Olea europaea) using microwave-assisted extraction: a comparative study. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01194-y

    Article  Google Scholar 

  28. Xie J, Zhu L, Luo H et al (2001) Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. J Chromatogr A 934:1–11. https://doi.org/10.1016/S0021-9673(01)01294-8

    Article  Google Scholar 

  29. Zhong H, Marcus SL, Li L (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom 16:471–481. https://doi.org/10.1016/j.jasms.2004.12.017

    Article  Google Scholar 

  30. Xiping Chen J, Zhang Y (2008) Rapid microwave-assisted hydrolysis for determination of ginkgo flavonol glycosides in extracts of Ginkgo biloba leaves. J Chromatogr Sci 46:117–121. https://doi.org/10.1093/chromsci/46.2.117

    Article  Google Scholar 

  31. Madej K (2009) Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. TrAC - Trends Anal Chem 28:436–446. https://doi.org/10.1016/j.trac.2009.02.002

    Article  Google Scholar 

  32. Mandal V, Mohan Y, Hemalatha S et al (2007) Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research. Pharmacogn Rev 1(1):7–18

    Google Scholar 

  33. Proestos C, Komaitis M (2008) Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Sci Technol 41:652–659. https://doi.org/10.1016/j.lwt.2007.04.013

    Article  Google Scholar 

  34. Kumar BB, Smita K, Kumar BB et al (2014) Microwave-Assisted Extraction and Solid-Phase Separation of Quercetin from Solid Onion (Allium cepa L.). Sep Sci Technol 49:2502–2509. https://doi.org/10.1080/01496395.2014.933982

    Article  Google Scholar 

  35. Chaves JO, de Souza MC, da Silva LC et al (2020) Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem 8:864. https://doi.org/10.3389/FCHEM.2020.507887/BIBTEX

    Article  Google Scholar 

  36. Pandey S (2006) Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal Chim Acta 556:38–45. https://doi.org/10.1016/j.aca.2005.06.038

    Article  Google Scholar 

  37. Zhang DH, Bai S, Ren MY, Sun Y (2008) Optimization of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquid. Food Chem 109:72–80. https://doi.org/10.1016/j.foodchem.2007.12.020

    Article  Google Scholar 

  38. Kim MJ, Choi MY, Lee JK, Ahn Y (2003) Enzymatic selective acylation of glycosides in ionic liquids: Significantly enhanced reactivity and regioselectivity. J Mol Catal B Enzym 26:115–118. https://doi.org/10.1016/j.molcatb.2003.04.001

    Article  Google Scholar 

  39. Polyakova Y, Jin Y, Zheng J, Ho Row K (2006) Effect of concentration of ionic liquid 1-butyl-3-methylimidazolium, tetrafuoroborate, for retention and separation of some amino and nucleic acids. J Liq Chromatogr Relat Technol 29:1687–1701. https://doi.org/10.1080/10826070600716769

    Article  Google Scholar 

  40. Armstrong DW, He L, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876. https://doi.org/10.1021/ac990443p

    Article  Google Scholar 

  41. Qiu H, Jiang S, Liu X (2006) N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A 1103:265–270. https://doi.org/10.1016/j.chroma.2005.11.035

    Article  Google Scholar 

  42. Kokosa JM (2019) Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. TrAC - Trends Anal Chem 118:238–247. https://doi.org/10.1016/J.TRAC.2019.05.012

    Article  Google Scholar 

  43. Du FY, Xiao XH, Li GK (2011) Ionic liquid aqueous solvent-based microwave-assisted hydrolysis for the extraction and HPLC determination of myricetin and quercetin from Myrica rubra leaves. Biomed Chromatogr 25:472–478. https://doi.org/10.1002/bmc.1470

    Article  Google Scholar 

  44. Mustapa AN, Martin Á, Mato RB, Cocero MJ (2015) Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind Crops Prod 74:83–94. https://doi.org/10.1016/j.indcrop.2015.04.035

    Article  Google Scholar 

  45. Talmaciu AI, Ravber M, Volf I et al (2016) Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. J Supercrit Fluids 117:243–251. https://doi.org/10.1016/j.supflu.2016.07.001

    Article  Google Scholar 

  46. Rafiee Z, Jafari SM, Alami M, Khomeiri M (2011) Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J Anim Plant Sci 21:738–745

    Google Scholar 

  47. Pan X, Niu G, Liu H (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42:129–133. https://doi.org/10.1016/S0255-2701(02)00037-5

    Article  Google Scholar 

  48. Munir MT, Kheirkhah H, Baroutian S et al (2018) Subcritical water extraction of bioactive compounds from waste onion skin. J Clean Prod 183:487–494. https://doi.org/10.1016/j.jclepro.2018.02.166

    Article  Google Scholar 

  49. Erşan S, Güçlü Üstündağ Ö, Carle R, Schweiggert RM (2018) Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem 253:46–54. https://doi.org/10.1016/j.foodchem.2018.01.116

    Article  Google Scholar 

  50. Plaza M, Amigo-Benavent M, del Castillo MD et al (2010) Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res Int 43:2341–2348. https://doi.org/10.1016/j.foodres.2010.07.036

    Article  Google Scholar 

  51. Ko MJ, Cheigh CI, Cho SW, Chung MS (2011) Subcritical water extraction of flavonol quercetin from onion skin. J Food Eng 102:327–333. https://doi.org/10.1016/j.jfoodeng.2010.09.008

    Article  Google Scholar 

  52. Kim SW, Ko MJ, Chung MS (2019) Extraction of the flavonol quercetin from onion waste by combined treatment with intense pulsed light and subcritical water extraction. J Clean Prod 231:1192–1199. https://doi.org/10.1016/j.jclepro.2019.05.280

    Article  Google Scholar 

  53. Hartonen K, Parshintsev J, Sandberg K et al (2007) Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta 74:32–38. https://doi.org/10.1016/j.talanta.2007.05.040

    Article  Google Scholar 

  54. Kumar MSY, Dutta R, Prasad D, Misra K (2011) Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem 127:1309–1316. https://doi.org/10.1016/j.foodchem.2011.01.088

    Article  Google Scholar 

  55. Ibañez E, Kubátová A, Señoráns FJ et al (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51:375–382. https://doi.org/10.1021/jf025878j

    Article  Google Scholar 

  56. Rodríguez-Meizoso I, Marin FR, Herrero M et al (2006) Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biomed Anal 41:1560–1565. https://doi.org/10.1016/j.jpba.2006.01.018

    Article  Google Scholar 

  57. Essien S, Young B, Baroutian S (2020) Subcritical water extraction for selective recovery of phenolic bioactives from kānuka leaves. J Supercrit Fluids 158:5–7. https://doi.org/10.1016/j.supflu.2019.104721

    Article  Google Scholar 

  58. Reis SF, Rai DK, Abu-Ghannam N (2012) Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem. https://doi.org/10.1016/j.foodchem.2012.06.068

    Article  Google Scholar 

  59. Aliakbarian B, Fathi A, Perego P, Dehghani F (2012) Extraction of antioxidants from winery wastes using subcritical water. J Supercrit Fluids 65:18–24. https://doi.org/10.1016/j.supflu.2012.02.022

    Article  Google Scholar 

  60. Dailey A, Vuong QV (2015) Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric 1. https://doi.org/10.1080/23311932.2015.1115646

  61. Yang Y, Belghazi M, Lagadec A et al (1998) Elution of organic solutes from different polarity sorbents using subcritical water. J Chromatogr A 810:149–159. https://doi.org/10.1016/S0021-9673(98)00222-2

    Article  Google Scholar 

  62. Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ (2012) Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 109:98–103. https://doi.org/10.1016/j.jfoodeng.2011.09.029

    Article  Google Scholar 

  63. Munekata PES, Alcántara C, Žugčić T et al (2020) Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res Int 134. https://doi.org/10.1016/j.foodres.2020.109242

  64. Ahmad-Qasem MH, Cánovas J, Barrajón-Catalán E et al (2013) Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov Food Sci Emerg Technol 17:120–129. https://doi.org/10.1016/j.ifset.2012.11.008

    Article  Google Scholar 

  65. Barba FJ, Grimi N, Vorobiev E (2015) Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J Food Eng 149:222–228. https://doi.org/10.1016/j.jfoodeng.2014.10.028

    Article  Google Scholar 

  66. Gavahian M, Farhoosh R, Javidnia K, et al (2017) Effects of Electrolyte Concentration and Ultrasound Pretreatment on Ohmic-Assisted Hydrodistillation of Essential Oils from Mentha piperita L. Int J Food Eng 13. https://doi.org/10.1515/ijfe-2017-0010

  67. Khemakhem I, Ahmad-Qasem MH, Catalán EB et al (2017) Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason Sonochem 34:466–473. https://doi.org/10.1016/j.ultsonch.2016.06.010

    Article  Google Scholar 

  68. Roselló-Soto E, Galanakis CM, Brnčić M et al (2015) Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci Technol 42:134–149. https://doi.org/10.1016/j.tifs.2015.01.002

    Article  Google Scholar 

  69. Asfaram A, Ghaedi M, Javadian H, Goudarzi A (2018) Cu- and S- @SnO2 nanoparticles loaded on activated carbon for efficient ultrasound assisted dispersive µSPE-spectrophotometric detection of quercetin in Nasturtium officinale extract and fruit juice samples: CCD-RSM design. Ultrason Sonochem 47:1–9. https://doi.org/10.1016/j.ultsonch.2018.04.008

    Article  Google Scholar 

  70. Sánchez-Vioque R, Polissiou M, Astraka K et al (2013) Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind Crops Prod 49:150–159. https://doi.org/10.1016/J.INDCROP.2013.04.053

    Article  Google Scholar 

  71. Goltz C, Ávila S, Barbieri JB et al (2018) Ultrasound-assisted extraction of phenolic compounds from Macela (Achyrolcine satureioides) extracts. Ind Crops Prod 115:227–234. https://doi.org/10.1016/j.indcrop.2018.02.013

    Article  Google Scholar 

  72. Xu DP, Zheng J, Zhou Y et al (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem 217:552–559. https://doi.org/10.1016/j.foodchem.2016.09.013

    Article  Google Scholar 

  73. Ribeiro DN, Alves FMS, dos Santos Ramos VH et al (2020) Extraction of passion fruit (Passiflora cincinnata Mast.) pulp oil using pressurized ethanol and ultrasound: Antioxidant activity and kinetics. J Supercrit Fluids 165:104944. https://doi.org/10.1016/j.supflu.2020.104944

    Article  Google Scholar 

  74. Madrera RR, Valles BS (2020) Development and validation of ultrasound assisted extraction (UAE) and HPLC-DAD method for determination of polyphenols in dry beans (Phaseolus vulgaris). J Food Compos Anal 85:103334. https://doi.org/10.1016/j.jfca.2019.103334

    Article  Google Scholar 

  75. Santos MC, Koetz M, Mendez ASL, Henriques AT (2020) Ultrasound-assisted extraction optimization and validation of ultra-performance liquid chromatographic method for the quantification of miquelianin in Cuphea glutinosa leaves. Talanta 216. https://doi.org/10.1016/j.talanta.2020.120988

  76. Radziejewska-Kubzdela E, Szwengiel A, Ratajkiewicz H, Nowak K (2020) Effect of ultrasound, heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason Sonochem 63:104971. https://doi.org/10.1016/j.ultsonch.2020.104971

    Article  Google Scholar 

  77. Xiao Y, Zhang H (2012) Homogeneous ionic liquid microextraction of the active constituents from fruits of Schisandra chinensis and Schisandra sphenanthera. Anal Chim Acta 712:78–84. https://doi.org/10.1016/j.aca.2011.11.033

    Article  Google Scholar 

  78. Chemat F, Rombaut N, Sicaire AG et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  79. Corbin C, Fidel T, Leclerc EA et al (2015) Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason Sonochem 26:176–185. https://doi.org/10.1016/j.ultsonch.2015.02.008

    Article  Google Scholar 

  80. Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M et al (2015) Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem 187:507–516. https://doi.org/10.1016/j.foodchem.2015.04.081

    Article  Google Scholar 

  81. Dahmoune F, Boulekbache L, Moussi K et al (2013) Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind Crops Prod 50:77–87. https://doi.org/10.1016/j.indcrop.2013.07.013

    Article  Google Scholar 

  82. Sparr Eskilsson C, Björklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250. https://doi.org/10.1016/S0021-9673(00)00921-3

    Article  Google Scholar 

  83. Chen XJ, Guo BL, Li SP et al (2007) Simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and high-performance liquid chromatography. J Chromatogr A 1163:96–104. https://doi.org/10.1016/j.chroma.2007.06.020

    Article  Google Scholar 

  84. Tahmasebi E, Yamini Y (2012) Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4@Ag core@shell nanoparticles: Characterization and application. Anal Chim Acta 756:13–22. https://doi.org/10.1016/j.aca.2012.10.040

    Article  Google Scholar 

  85. Vidal L, Parshintsev J, Hartonen K et al (2012) Ionic liquid-functionalized silica for selective solid-phase extraction of organic acids, amines and aldehydes. J Chromatogr A 1226:2–10. https://doi.org/10.1016/j.chroma.2011.08.075

    Article  Google Scholar 

  86. Liu H, Liang X, Wang X et al (2015) Polyelectrolyte assembled graphene oxide coated silica composite as sorbent for solid-phase extraction of cinnamic acid and its derivatives. RSC Adv 5:4420–4427. https://doi.org/10.1039/c4ra13331e

    Article  Google Scholar 

  87. Guo F, Liu Q, Qu G-b et al (2013) Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1281:9–18. https://doi.org/10.1016/j.chroma.2013.01.044

    Article  Google Scholar 

  88. Liu H, Zhang M, Guo Y, Qiu H (2016) Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food Chem 204:56–61. https://doi.org/10.1016/j.foodchem.2016.02.102

    Article  Google Scholar 

  89. Bagheri A, Behbahani M, Taghizadeh M et al (2012) Polymer As a New Sorbent for Selective Extraction and Preconcentration of. Food Chem. https://doi.org/10.1016/j.foodchem.2012.11.042

    Article  Google Scholar 

  90. Liu H, Guo Y, Wang X et al (2015) Preparation of an Al2O3/SiO2 core-shell composite material for solid phase extraction of flavonoids. Anal Methods 7:3486–3492. https://doi.org/10.1039/c5ay00271k

    Article  Google Scholar 

  91. Pardo A, Mespouille L, Blankert B et al (2014) Quercetin-imprinted chromatographic sorbents revisited: Optimization of synthesis and rebinding protocols for application to natural resources. J Chromatogr A 1364:128–139. https://doi.org/10.1016/j.chroma.2014.08.064

    Article  Google Scholar 

  92. Nam MW, Zhao J, Lee MS et al (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727. https://doi.org/10.1039/c4gc01556h

    Article  Google Scholar 

  93. Wang Y, Gao S, Zang X et al (2012) Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal Chim Acta 716:112–118. https://doi.org/10.1016/j.aca.2011.12.007

    Article  Google Scholar 

  94. Tian M, Qiao J, Row KH (2013) Facile Preparation of an Ionic Liquid Composite Mesoporous Polymer as a Solid Phase Extraction Adsorbent for the Separation and Purification of Flavonoids from Chamaecyparis obtusa. Anal Lett 46:1331–1341. https://doi.org/10.1080/00032719.2012.763170

    Article  Google Scholar 

  95. Taylor P, Rao TP, Praveen RS et al (2010) Critical Reviews in Analytical Chemistry Styrene – Divinyl Benzene Copolymers : Synthesis , Characterization , and Their Role in Inorganic Trace Analysis Styrene – Divinyl Benzene Copolymers : Synthesis , Characterization , and Their Role in Inorganic Tra. 37–41. https://doi.org/10.1080/10408340490888689

  96. Lemos VA, Santos MS, Santos ES et al (2007) Application of polyurethane foam as a sorbent for trace metal pre-concentration — a review. Spectrochimica Acta Part B 62:4–12. https://doi.org/10.1016/j.sab.2006.12.006

    Article  Google Scholar 

  97. Wang M, Yuan H, Deng W et al (2015) A Taiji-principle-designed magnetic porous C-doped graphitic carbon nitride for environment-friendly solid phase extraction of pollutants from water samples. J Chromatogr A 1412:12–21. https://doi.org/10.1016/j.chroma.2015.08.011

    Article  Google Scholar 

  98. Hao L, Wang C, Wu Q et al (2014) Metal-organic framework derived magnetic nanoporous carbon: Novel adsorbent for magnetic solid-phase extraction. Anal Chem 86:12199–12205. https://doi.org/10.1021/ac5031896

    Article  Google Scholar 

  99. Shi R, Yan L, Xu T et al (2015) Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke. J Chromatogr A 1375:1–7. https://doi.org/10.1016/j.chroma.2014.11.057

    Article  Google Scholar 

  100. Feng J, Sun M, Li J et al (2012) A novel aromatically functional polymeric ionic liquid as sorbent material for solid-phase microextraction. J Chromatogr A 1227:54–59. https://doi.org/10.1016/j.chroma.2012.01.010

    Article  Google Scholar 

  101. Feng J, Sun M, Bu Y, Luo C (2015) Facile modification of multi-walled carbon nanotubes-polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J Chromatogr A 1393:8–17. https://doi.org/10.1016/j.chroma.2015.03.022

    Article  Google Scholar 

  102. Qiu H, Mallik AK, Takafuji M et al (2012) Enhancement of molecular shape selectivity by in situ anion-exchange in poly(octadecylimidazolium) silica column. J Chromatogr A 1232:116–122. https://doi.org/10.1016/j.chroma.2011.10.065

    Article  Google Scholar 

  103. Ghiasvand AR, Solaymani H, Heidari N (2017) Separation and sensitive determination of quercetin in Rosa canina L. using solidified floating organic drop microextraction followed by high-performance liquid chromatography determination. J Iran Chem Soc 14:1113–1118. https://doi.org/10.1007/s13738-017-1061-9

    Article  Google Scholar 

  104. Wang Z, Sun R, Wang Y et al (2014) Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection. J Chromatogr B Anal Technol Biomed Life Sci 969:205–212. https://doi.org/10.1016/j.jchromb.2014.08.022

    Article  Google Scholar 

  105. Hou X, Liu S, Zhou P et al (2016) Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design. J Chromatogr A 1456:10–18. https://doi.org/10.1016/j.chroma.2016.05.096

    Article  Google Scholar 

  106. Krňanová J, Denderz N, Lehotay J, Samohýl M (2015) Determination of some flavonoids by HPLC using quercetin-molecularly imprinted polymers. J Liq Chromatogr Relat Technol 38:702–708. https://doi.org/10.1080/10826076.2014.951768

    Article  Google Scholar 

  107. Martins RO, Gomes IC, Mendonça Telles AD et al (2020) Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. J Chromatogr A 460977. https://doi.org/10.1016/j.chroma.2020.460977

  108. Euterpio MA, Pagano I, Piccinelli AL et al (2013) Development and validation of a method for the determination of (E)-resveratrol and related phenolic compounds in beverages using molecularly imprinted solid phase extraction. J Agric Food Chem 61:1640–1645. https://doi.org/10.1021/jf303251m

    Article  Google Scholar 

  109. Ji K, Luo X, He L et al (2020) Preparation of hollow magnetic molecularly imprinted polymer and its application in silybin recognition and controlled release. J Pharm Biomed Anal 180:113036. https://doi.org/10.1016/j.jpba.2019.113036

    Article  Google Scholar 

  110. Cheng Y, Nie J, Li J et al (2019) Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem 287:100–106. https://doi.org/10.1016/j.foodchem.2019.02.069

    Article  Google Scholar 

  111. Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: Origin, features and perspectives. Microchim Acta 180:1359–1370. https://doi.org/10.1007/s00604-013-0992-9

    Article  Google Scholar 

  112. Samah NA, Sánchez-Martín M-J, Sebastián RM et al (2018) Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization. Sci Total Environ 631–632:1534–1543. https://doi.org/10.1016/j.scitotenv.2018.03.087

    Article  Google Scholar 

  113. Ulbricht M (2004) Membrane separations using molecularly imprinted polymers. J Chromatogr B Anal Technol Biomed Life Sci 804:113–125. https://doi.org/10.1016/j.jchromb.2004.02.007

    Article  Google Scholar 

  114. Kryvshenko GA, Apel PY, Abramchuk SS, Beklemishev MK (2012) A Highly Permeable Membrane for Separation of Quercetin Obtained by Nickel(II) Ion-Mediated Molecular Imprinting. Sep Sci Technol 47:1715–1724. https://doi.org/10.1080/01496395.2012.659317

    Article  Google Scholar 

  115. Piletsky SA, Panasyuk TL, Piletskaya EV et al (1999) Receptor and transport properties of imprinted polymer membranes - A review. J Memb Sci 157:263–278. https://doi.org/10.1016/S0376-7388(99)00007-1

    Article  Google Scholar 

  116. Theodoridis G, Lasáková M, Škeříková V et al (2006) Molecular imprinting of natural flavonoid antioxidants: Application in solid-phase extraction for the sample pretreatment of natural products prior to HPLC analysis. J Sep Sci 29:2310–2321. https://doi.org/10.1002/jssc.200500492

    Article  Google Scholar 

  117. Chen C-Y, Wang C-H, Chen A-H (2011) Recognition of molecularly imprinted polymers for a quaternary alkaloid of berberine. Talanta 84:1038–1046. https://doi.org/10.1016/j.talanta.2011.03.009

    Article  Google Scholar 

  118. Huang Y, Pan J, Liu Y et al (2019) A SPE method with two MIPs in two steps for improving the selectivity of MIPs. Anal Chem 91:8436–8442. https://doi.org/10.1021/acs.analchem.9b01453

    Article  Google Scholar 

  119. Liang C, Zhang Z, Zhang H et al (2020) Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem 309:125680. https://doi.org/10.1016/j.foodchem.2019.125680

    Article  Google Scholar 

  120. Huber C, Preis M, Harvey PJ et al (2016) Emerging pollutants and plants - Metabolic activation of diclofenac by peroxidases. Chemosphere 146:435–441. https://doi.org/10.1016/j.chemosphere.2015.12.059

    Article  Google Scholar 

  121. Chrzanowska AM, Poliwoda A, Wieczorek PP (2015) Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase extraction. Mater Sci Eng C 49:793–798. https://doi.org/10.1016/j.msec.2015.01.069

    Article  Google Scholar 

  122. Guć M, Messyasz B, Schroeder G (2021) Environmental impact of molecularly imprinted polymers used as analyte sorbents in mass spectrometry. Sci Total Environ 772:145074. https://doi.org/10.1016/j.scitotenv.2021.145074

    Article  Google Scholar 

  123. Mahony JO, Nolan K, Smyth MR, Mizaikoff B (2005) Molecularly imprinted polymers - Potential and challenges in analytical chemistry. Anal Chim Acta 534:31–39. https://doi.org/10.1016/J.ACA.2004.07.043

    Article  Google Scholar 

  124. O’Mahony J, Molinelli A, Nolan K et al (2006) Anatomy of a successful imprint: Analysing the recognition mechanisms of a molecularly imprinted polymer for quercetin. Biosens Bioelectron 21:1383–1392. https://doi.org/10.1016/j.bios.2005.05.015

    Article  Google Scholar 

  125. Zengin A, Badak MU, Aktas N (2018) Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J Sep Sci 41:3459–3466. https://doi.org/10.1002/jssc.201800437

    Article  Google Scholar 

  126. Hemmati K, Masoumi A, Ghaemy M (2016) Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release. Carbohydr Polym 136:630–640. https://doi.org/10.1016/j.carbpol.2015.09.006

    Article  Google Scholar 

  127. Zaidi SA, Shin JH (2014) Molecularly imprinted polymer electrochemical sensors based on synergistic effect of composites synthesized from graphene and other nanosystems. Int J Electrochem Sci 9:4598–4616

    Google Scholar 

  128. Molinelli A, Weiss R, Mizaikoff B (2002) Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J Agric Food Chem 50:1804–1808. https://doi.org/10.1021/jf011213q

    Article  Google Scholar 

  129. Song X, Li J, Wang J, Chen L (2009) Quercetin molecularly imprinted polymers: Preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 80:694–702. https://doi.org/10.1016/j.talanta.2009.07.051

    Article  Google Scholar 

  130. Karaman Ersoy Ş, Tütem E, Sözgen Başkan K et al (2016) Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract. J Chromatogr B Anal Technol Biomed Life Sci 1017–1018:89–100. https://doi.org/10.1016/j.jchromb.2016.02.034

    Article  Google Scholar 

  131. Pakade V, Cukrowska E, Lindahl S et al (2013) Molecular imprinted polymer for solid-phase extraction of flavonol aglycones from Moringa oleifera extracts. J Sep Sci 36:548–555. https://doi.org/10.1002/jssc.201200576

    Article  Google Scholar 

  132. Gao B, Niu Q, Du R (2010) Preparation and recognition performance of cytisine alkaloid-imprinted material prepared using novel surface molecular imprinting technique. J Sep Sci 33:1338–1348. https://doi.org/10.1002/jssc.200900762

    Article  Google Scholar 

  133. Singh B, Chauhan N, Sharma V (2011) Design of molecular imprinted hydrogels for controlled release of cisplatin: Evaluation of network density of hydrogels. Ind Eng Chem Res 50:13742–13751. https://doi.org/10.1021/ie200758b

    Article  Google Scholar 

  134. Dramou P, Itatahine A, Fizir M et al (2019) Preparation of novel molecularly imprinted magnetic graphene oxide and their application for quercetin determination. J Chromatogr B Anal Technol Biomed Life Sci 1124:273–283. https://doi.org/10.1016/j.jchromb.2019.06.007

    Article  Google Scholar 

  135. Xie L, Guo J, Zhang Y, Shi S (2014) Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC. J Agric Food Chem 62:8221–8228. https://doi.org/10.1021/jf5021895

    Article  Google Scholar 

  136. Marć M, Wieczorek PP (2020) The preparation and evaluation of core-shell magnetic dummy-template molecularly imprinted polymers for preliminary recognition of the low-mass polybrominated diphenyl ethers from aqueous solutions. Sci Total Environ 724:138151. https://doi.org/10.1016/j.scitotenv.2020.138151

    Article  Google Scholar 

  137. Singh R, Verma R, Sumana G et al (2012) Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bioelectrochemistry 86:30–37. https://doi.org/10.1016/j.bioelechem.2012.01.005

    Article  Google Scholar 

  138. Wang J, Geng S, Wang B et al (2017) Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract. J Chromatogr A 1508:42–52. https://doi.org/10.1016/j.chroma.2017.05.062

    Article  Google Scholar 

  139. Hemmati K, Sahraei R, Ghaemy M (2016) Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer (Guildf) 101:257–268. https://doi.org/10.1016/j.polymer.2016.08.074

    Article  Google Scholar 

  140. Sabín López A, Paredes Ramos M, Herrero R, López Vilariño JM (2020) Synthesis of magnetic green nanoparticle – Molecular imprinted polymers with emerging contaminants templates. J Environ Chem Eng 8:103889. https://doi.org/10.1016/j.jece.2020.103889

    Article  Google Scholar 

  141. Faizal CKM, Hoshina Y, Kobayashi T (2008) Scaffold membranes for selective adsorption of α-tocopherol by phase inversion covalently imprinting technique. J Memb Sci 322:503–511. https://doi.org/10.1016/j.memsci.2008.05.046

    Article  Google Scholar 

  142. Tasselli F, Donato L, Drioli E (2008) Evaluation of molecularly imprinted membranes based on different acrylic copolymers. J Memb Sci 320:167–172. https://doi.org/10.1016/j.memsci.2008.03.071

    Article  Google Scholar 

  143. Steinke J, Sherrington DC, Dunkin IR (1995) Imprinting of synthetic polymers using molecular templates. Adv Polym Sci 123:81–125. https://doi.org/10.1007/3-540-58908-2_3

    Article  Google Scholar 

  144. Wang J, Hua ZD, Chen ZY et al (2009) Molecular imprinting of protein by coordinate interaction. Chinese Chem Lett 20:747–750. https://doi.org/10.1016/j.cclet.2008.12.035

    Article  Google Scholar 

  145. Papaioannou EH, Liakopoulou-Kyriakides M, Papi RM, Kyriakidis DA (2008) Artificial receptor for peptide recognition in protic media: The role of metal ion coordination. Mater Sci Eng B Solid-State Mater Adv Technol 152:28–32. https://doi.org/10.1016/j.mseb.2008.06.017

    Article  Google Scholar 

  146. Zheng MX, Li SJ, Luo X (2007) Rationally designing molecularly imprinted polymer toward a high specific adsorbent by using metal as assembled pivot. J Macromol Sci Part A Pure Appl Chem 44:1187–1194. https://doi.org/10.1080/10601320701561122

    Article  Google Scholar 

  147. Shan J, Wang B (2011) Preparation and characterization of a metal-complexing imprinted polymer for improved Quercetin recognition. Sep Sci Technol 46:164–171. https://doi.org/10.1080/01496391003789189

    Article  Google Scholar 

  148. Esfandyari-Manesh M, Javanbakht M, Atyabi F et al (2011) Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. J Appl Polym Sci 121:1118–1126. https://doi.org/10.1002/app.33812

    Article  Google Scholar 

  149. Iben Nasser I, Algieri C, Garofalo A et al (2016) Hybrid imprinted membranes for selective recognition of quercetin. Sep Purif Technol 163:331–340. https://doi.org/10.1016/j.seppur.2016.03.015

    Article  Google Scholar 

  150. Huang Z, Zhang P, Yun Y (2017) Preparing molecularly imprinted membranes by phase inversion to separate kaempferol. Polym Adv Technol 28:373–378. https://doi.org/10.1002/pat.3898

    Article  Google Scholar 

  151. Huang Z, Xia Q, Yun Y (2018) Effects of different organic additives on kaempferol molecularly imprinted membrane properties. Polym Bull 75:441–452. https://doi.org/10.1007/s00289-017-2044-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology, India, for providing financial support (INT/HUN/P-17/2017); the Hungarian Science and Research Foundation under Grant 2017–2.3.7-TÉT–IN–2017-00016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Arthanareeswaran.

Ethics declarations

Conflict of interest

We proclaim no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokulakrishnan, S.A., Arthanareeswaran, G., Gnanasekaran, G. et al. Advanced extraction and separation approaches for the recovery of dietary flavonoids from plant biomass: A review. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02648-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02648-1

Keywords

Navigation