Skip to main content

Advertisement

Log in

Sustainable production of lutein—an underexplored commercially relevant pigment from microalgae

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Currently, microalgae-derived lutein is gaining attention for its potential applications in cosmeceutical, nutraceutical, pharmaceutical, and food industries. Lutein is of commercial interest for a broad variety of health benefits: antioxidant activity, skin health improvement, reducing age-related macular degeneration, and the treatment of cancer. Microalgae are the fastest-growing lutein source, have the highest content in nature, and are a promising sustainable alternative to the current commercial source, marigold flowers. Microalgal cultivation has added environmental benefits over plants with higher carbon sequestration, reduced water footprint, and no pesticide use. To date, no industrial facility exists for the production of lutein from microalgae. This review outlines the existing technologies for bioprocessing of lutein at pilot scale (cultivation, harvesting, extraction, and purification). In addition, lutein encapsulation, a seldom discussed area, is explored in depth. In view of this knowledge, lutein could be anticipated as the next successful sustainable product from microalgae obtained at industrial scale for the circular economy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data was not generated in this review article; thus, declaration of data is not applicable.

References

  1. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93. https://doi.org/10.1016/j.plipres.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  2. Solovchenko A, Neverov K (2017) Carotenogenic response in photosynthetic organisms: a colorful story. Photosynth Res 133:31–47. https://doi.org/10.1007/s11120-017-0358-y

    Article  CAS  PubMed  Google Scholar 

  3. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436(7047):134–137. https://doi.org/10.1038/nature03795

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Kumar SG, Balraj SV, Verma A, Verma ML, Kushwaha R (2020) Biotechnological production of high-valued algal astaxanthin and lutein under different growth conditions. In: Verma ML, Chandal AK (eds) Biotechnological production of bioactive compounds. Elsevier, pp 191–220

    Chapter  Google Scholar 

  5. Fernández-Sevilla JM, Fernández FGA, Grima EM (2010) Biotechnological production of lutein and its applications. App Microb Biotechnol 86(1):27–40. https://doi.org/10.1007/s00253-009-2420-y

    Article  CAS  Google Scholar 

  6. D’Este M, De Francisci D, Angelidaki I (2017) Novel protocol for lutein extraction from microalga Chlorella vulgaris. Biochem Eng J 127:175–179. https://doi.org/10.1016/j.bej.2017.06.019

    Article  CAS  Google Scholar 

  7. Lin JH, Lee DJ, Chang JS (2015) Lutein production from biomass: Marigold flowers versus microalgae. Bioresour Technol 184:421–428. https://doi.org/10.1016/j.biortech.2014.09.099

    Article  CAS  PubMed  Google Scholar 

  8. Puchkova T, Khapchaeva S, Zotov V, Lukyanov A, Solovchenko A (2020) Microalgae as a sustainable source of cosmeceuticals. Mar Biol J 6:67–81. https://doi.org/10.20944/preprints202012.0696.v1

    Article  Google Scholar 

  9. Chen CY, Lu IC, Nagarajan D, Chang CH, Ng IS, Lee DJ, Chang JS (2018) A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour Technol 253:141–147. https://doi.org/10.1016/j.biortech.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  10. Spinola MV, Díaz-Santos E (2020) Microalgae nutraceuticals: the role of lutein in human health. In: Alam MA, Xu JL, Wang Z (eds) Microalgae biotechnology for food, health and high value products. Springer, Singapore, pp 243–263

    Chapter  Google Scholar 

  11. Barkia I, Saari N, Manning S (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:304. https://doi.org/10.3390/md17050304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Alam MA, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704:135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ochoa Becerra M, Mojica Contreras L, Hsieh Lo M, Mateos Díaz J, Castillo Herrera G (2020) Lutein as a functional food ingredient: stability and bioavailability. J Funct Foods 66:103771. https://doi.org/10.1016/j.jff.2019.103771

    Article  CAS  Google Scholar 

  14. Butler T, Golan Y (2020) Astaxanthin production from microalgae. In: Alam MA, Xu JL, Wang Z (eds) Microalgae biotechnology for food, health and high value products. Springer, Singapore, pp 175–242

    Chapter  Google Scholar 

  15. Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177. https://doi.org/10.1007/s11120-010-9583-3

    Article  CAS  PubMed  Google Scholar 

  16. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9(12):1607–1624. https://doi.org/10.3390/md9091607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cordero BF, Couso I, León R, Rodríguez H, Vargas MÁ (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microb Biotech 91(2):341–351. https://doi.org/10.1007/s00253-011-3262-y

    Article  CAS  Google Scholar 

  18. Yeh TJ, Tseng YF, Chen YC, Hsiao Y, Lee PC, Chen TJ, Chen CY, Kao CY, Chang JS, Chen JC, Lee TM (2017) Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal Res 21:103–119. https://doi.org/10.1016/j.algal.2016.11.013

    Article  Google Scholar 

  19. Rathod JP, Vira S, Lali AM, Parkash G (2020) Metabolic engineering of Chlamydomonas reinhardtii for enhanced β-carotene and lutein production. Appl Biochem Biotechnol 190:1457–1469. https://doi.org/10.1007/s12010-019-03194-9

    Article  CAS  PubMed  Google Scholar 

  20. Gimpel J, Henríquez V, Mayfield S (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376. https://doi.org/10.3389/fmicb.2015.01376

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotech Adv 26(4):352–360. https://doi.org/10.1016/j.biotechadv.2008.03.004

    Article  CAS  Google Scholar 

  22. Fábryová T, Cheel J, Kubáč D, Hrouzek P, Vu DL, Tůmová L, Kopecký J (2019) Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res 41:101574. https://doi.org/10.1016/j.algal.2019.101574

    Article  Google Scholar 

  23. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43(4):365–376. https://doi.org/10.1080/09670260802227736

    Article  CAS  Google Scholar 

  24. Dautor Y, Úbeda-Mínguez P, Chileh T, García-Maroto F, Alonso DL (2014) Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis. Biotechnol Lett 36(12):2551–2558. https://doi.org/10.1016/j.jece.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  25. Tokunaga S, Morimoto D, Koyama T, Kubo Y, Shiroi M, Ohara K, Higashine T, Mori Y, Nakagawa S, Sawayama S (2021) Enhanced lutein production in Chlamydomonas reinhardtii by overexpression of the lycopene epsilon cyclase gene. Appl Biochem Biotechnol 193:1967–1978. https://doi.org/10.1007/s12010-021-03524-w

    Article  CAS  PubMed  Google Scholar 

  26. Lou S, Lin X, Liu C, Anwar M, Li H, Hu Z (2021) Molecular cloning and functional characterization of CvLCYE, a key enzyme in lutein synthesis pathway in Chlorella vulgaris. Algal Res 55:102246. https://doi.org/10.1016/j.algal.2021.102246

    Article  Google Scholar 

  27. Arriola M, Velmurugan N, Zhang Y, Plunkett M, Hondzo H, Barney B (2017) Genome sequences of Chlorella sorokiniana UTEX 1602 and micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. Plant J 93:566–586. https://doi.org/10.1111/tpj.13789

    Article  CAS  Google Scholar 

  28. Chen JH, Kato Y, Matsuda M, Chen CY, Nagarajan D, Hasunuma T, Kondo A, Chang JS (2021) Lutein production with Chlorella sorokiniana MB-1-M12 using novel two-stage cultivation strategies – metabolic analysis and process improvement. Bioresour Technol 334:125200. https://doi.org/10.1016/j.biortech.2021.125200

    Article  CAS  PubMed  Google Scholar 

  29. Chen JH, Chen CY, Chang JS (2017) Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth. J Taiwan Inst Chem Eng 79:66–73. https://doi.org/10.1016/j.jtice.2017.04.022

    Article  CAS  Google Scholar 

  30. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, PolleJ SA, Terry A, Yamada T, Dunigan D, Grigoriev I, Claverie JM, Van Etten J (2010) The Chlorella variabilis NC64 A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955. https://doi.org/10.1105/tpc.110.076406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuiné S, Li-Beisson Y, Delledonne M, Ballottari M (2019) Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J 100:1289–1305. https://doi.org/10.1111/tpj.14508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma R, Lin X (2014) Vitreoscilla hemoglobin gene (vgb) improves lutein production in Chlorella vulgaris. Chin J Ocean Limnol 32:390–396. https://doi.org/10.1007/s00343-014-3142-2

    Article  CAS  Google Scholar 

  33. Krasovec M, Vancaester E, Rombauts S, Bucchini F, Yau S, Hemon C, Lebredonchel H, Grimsley N, Moreau H, Sanchez S, Vandepoele K, Piganeau G (2018) Genome analyses of the microalga picochlorum provide insights into the evolution of thermotolerance in the green lineage. Genome Biol Evol 10(9):2347–2365. https://doi.org/10.1093/gbe/evy167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen BL, Mhuanthong W, Ho SH, Chang JS, Zhao XQ, Bai FW (2020) Genome sequencing, assembly, and annotation of the self-flocculating microalga Scenedesmus obliquus AS-6-11. BMC Genomics 21:743. https://doi.org/10.1186/s12864-020-07142-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steadman Tyler C, Hovde B, Daligault H, Zhang X, Kunde Y, Marrone B, Twary S, Starkenburg S (2019) High-quality draft genome sequence of the green alga Tetraselmis striata (Chlorophyta) generated from PacBio sequencing. Microbiol Resour Announc 8(43):e00780-e781. https://doi.org/10.1128/MRA.00780-19

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bauman N, Akella S, Hann E, Morey R, Schwartz AS, Brown R, Richardson TH (2018) Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-megabase chloroplast genome. Genome Announc 6:e00181-e218. https://doi.org/10.1128/genomeA.00181-18

    Article  PubMed  PubMed Central  Google Scholar 

  37. Varela JC, Pereira H, Vila M, León R (2015) Production of carotenoids by microalgae: achievements and challenges. Photosynth Res 125(3):423–436. https://doi.org/10.1007/s11120-015-0149-2

    Article  CAS  PubMed  Google Scholar 

  38. Harris EH (2009) The Chlamydomonas source book: Introduction to Chlamydomonas and its laboratory use. 1. Academic press.

  39. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard LK, Marshall WF (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. https://doi.org/10.1126/science.1143609

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Ghribi M, Nouemssi SB, Meddeb-Mouelhi F, Desgagne-Penix I (2020) Genome editing by crispr-cas: a game change in the genetic manipulation of Chlamydomonas. Life 10(11):295. https://doi.org/10.3390/life10110295

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Muñoz C, De Jaeger L, Sturme M, Lip K, Olijslager J, Springer J, Wolbert E, Martens D, Eggink G, Weusthuis R, Wijffels R (2018) Improved DNA/protein delivery in microalgae – a simple and reliable method for the prediction of optimal electroporation settings. Algal Res 33:448–455. https://doi.org/10.1016/j.algal.2018.06.021

    Article  Google Scholar 

  42. Liu J, Gerken H, Huang J, Chen F (2013) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochem 48:788–795. https://doi.org/10.1016/j.procbio.2013.04.020

    Article  CAS  Google Scholar 

  43. Smith D (2018) Haematococcus lacustris: the makings of a giant-sized chloroplast genome. AoB Plants 10:ply058. https://doi.org/10.1093/aobpla/ply058

  44. Butler T, Kapoore R, Vaidyanathan S (2020) Phaeodactylum tricornutum: a diatom cell factory. Trend Biotechnol 38(6):606–622. https://doi.org/10.1016/j.tibtech.2019.12.023

    Article  CAS  Google Scholar 

  45. Muñoz C, Sturme M, D’Adamo S, Weusthuis R, Wijffels R (2019) Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E coli conjugation. Algal Res 39:101453. https://doi.org/10.1016/j.algal.2019.101453

    Article  Google Scholar 

  46. Yedahalli SS (2017) Genetic engineering studies of Escherichia coli and microalgae for expression of hydrolytic enzymes and development of high throughput screening technique. Dissertation, Western University, Canada.

  47. Scranton M, Ostrand J, Fields F, Mayfield S (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531. https://doi.org/10.1111/tpj.12780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Díaz-Santos E, Vila M, Vigara J, León R (2016) A new approach to express transgenes in microalgae and its use to increase the flocculation ability of Chlamydomonas reinhardtii. J Appl Phyco 28:1611–1621. https://doi.org/10.1007/s10811-015-0706-2

    Article  CAS  Google Scholar 

  49. Baier T, Jacobebbinghaus N, Einhaus A, Lauersen K, Kruse O (2020) Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLOS Genet 16:e1008944. https://doi.org/10.1371/journal.pgen.1008944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garcia Echauri SA, Cardineau G (2015) TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant Methods 11.https://doi.org/10.1186/s13007-015-0064-8

  51. Pratheesh P, Vineetha M, Kurup G (2014) An efficient protocol for the agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechno 56:507–517. https://doi.org/10.1007/s12033-013-9720-2

    Article  CAS  Google Scholar 

  52. Seo S, Jeon H, Hwang S, Jin E, Chang KS (2015) Development of a new constitutive expression system for the transformation of the diatom Phaeodactylum tricornutum. Algal Res 11:50–54. https://doi.org/10.1016/j.algal.2015.05.012

    Article  Google Scholar 

  53. Changko S, Rajakumar PD, Young RE, Purton S (2020) The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbial Biotechnol 104(2):675–686. https://doi.org/10.1007/s00253-019-10258-7

    Article  CAS  Google Scholar 

  54. Zhang MP, Wang M, Wang C (2021) Nuclear transformation of Chlamydomonas reinhardtii: a review. Biochimie 181:1–11. https://doi.org/10.1016/j.biochi.2020.11.016

    Article  CAS  PubMed  Google Scholar 

  55. Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117. https://doi.org/10.1016/j.pbi.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotech Adv 30(6):1602–1613. https://doi.org/10.1016/j.biotechadv.2012.05.004

    Article  CAS  Google Scholar 

  57. Bajhaiya AK, Moreira JZ, Pittman JK (2017) Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol 35:95–99. https://doi.org/10.1016/j.tibtech.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  58. Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR (2015) Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J Exp Bot 66(15):4551–4566. https://doi.org/10.1093/jxb/erv217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotech Adv 34(8):1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005

    Article  CAS  Google Scholar 

  60. Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS (2017) The algal revolution. Trends Plant Sci 22(8):726–738. https://doi.org/10.1016/j.tplants.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  61. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo KJSR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6(1). https://doi.org/10.1038/srep27810

  62. Lin WR, Ng IS (2020) Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme Microb Technol 133:109458. https://doi.org/10.1016/j.enzmictec.2019.109458

    Article  CAS  PubMed  Google Scholar 

  63. Zorin B, Hegemann P, Sizova I (2005) Nuclear-gene targeting by using single-stranded DNA avoidsillegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4(7):1264–1272. https://doi.org/10.1128/EC.4.7.1264-1272.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469. https://doi.org/10.1128/EC.00213-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park RV, Asbury H, Miller SMJM (2020) Modification of a Chlamydomonas reinhardtii CRISPR/Cas9 transformation protocol for use with widely available electroporation equipment. 7:100855. Methods X https://doi.org/10.1016/j.mex.2020.100855

  66. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:1–7. https://doi.org/10.1038/srep30620

    Article  CAS  Google Scholar 

  67. Baek K, Yu J, Jeong J, Sim SJ, Bae S, Jin ES (2018) Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 115:719–728. https://doi.org/10.1002/bit.26499

    Article  CAS  PubMed  Google Scholar 

  68. Miyake K, Abe K, Ferri S, Nakajima M, Nakamura M, Yoshida W, Kojima K, Ikebukuro K, Sode K (2014) A green-light inducible lytic system for cyanobacterial cells. Biotechnol Biofuels 7:56. https://doi.org/10.1186/1754-6834-7-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752. https://doi.org/10.1111/tpj.12413

    Article  CAS  PubMed  Google Scholar 

  70. Ho SH, Chan MC, Liu CC, Chen CY, Chang JS (2013) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152(1):275–282. https://doi.org/10.1016/j.biortech.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  71. Asker D, Awad TS (2019) Isolation and characterization of a novel lutein-producing marine microalga using high throughput screening. Food Res Int 116:660–667. https://doi.org/10.1016/j.foodres.2018.08.093

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro J, Evangelista S, Martini M, Altomonte I, Salari F, Nardoni S, Sorce C, Silva FLuiz HD, Andreucci A (2017) Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate. Biocatal Agric Biotechnol 11:207–213. https://doi.org/10.1016/j.bcab.2017.07.007

    Article  Google Scholar 

  73. Xie Y, Lu K, Zhao X, Ma R, Chen J, Ho SH (2019) Manipulating nutritional conditions and salinity-gradient stress for enhanced lutein production in marine microalga Chlamydomonas sp. Biotechnol J 14(4):1800380. https://doi.org/10.1002/biot.201800380

    Article  CAS  Google Scholar 

  74. Xie Y, Li J, Ho SH, Ma R, Shi X, Liu L (2020) Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresour Technol 314:123767. https://doi.org/10.1016/j.biortech.2020.123767

    Article  CAS  PubMed  Google Scholar 

  75. Loganathan BG, Orsat V, Lefsrud M (2020) Evaluation and interpretation of growth, biomass productivity and lutein content of Chlorella variabilis on various media. J Environ Chem Eng 8(3):103750. https://doi.org/10.1016/j.jece.2020.103750

    Article  CAS  Google Scholar 

  76. Gong M, Bassi A (2017) Investigation of Chlorella vulgaris UTEX 265 Cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Appl Biochem Biotechnol 183:652–671. https://doi.org/10.1007/s12010-017-2537-x

    Article  CAS  PubMed  Google Scholar 

  77. McClure DD, Nightingale JK, Luiz A, Black S, Zhu J, Kavanagh JM (2019) Pilot-scale production of lutein using Chlorella vulgaris. Algal Res 44:101707. https://doi.org/10.1016/j.algal.2019.101707

    Article  Google Scholar 

  78. Ma R, Xurui Z, Ho SH, Shi X, Liu L, Xie Y, Lu Y (2020) Co-production of lutein and fatty acid in microalga Chlamydomonas sp JSC4 in response to different temperatures with gene expression profiles. Algal Res 47:101821. https://doi.org/10.1016/j.algal.2020.101821

    Article  Google Scholar 

  79. Bermejo E, Ruiz-Domínguez MC, Cuaresma M, Vaquero I, Ramos-Merchante A, Vega JM, Vílchez C, Garbayo I (2018) Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. J Biosc Bioeng 125:669–675. https://doi.org/10.1016/j.jbiosc.2017.12.025

    Article  CAS  Google Scholar 

  80. Chen CY, Ho SH, Liu CC, Chang JS (2017) Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. J Taiwan Inst Chem Eng 79:88–96. https://doi.org/10.1016/j.jtice.2017.04.020

    Article  CAS  Google Scholar 

  81. Xie Y, Li J, Ma R, Ho SH, Shi X, Liu L, Chen J (2019) Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60. Bioresour Technol 290:121798. https://doi.org/10.1016/j.biortech.2019.121798

    Article  CAS  PubMed  Google Scholar 

  82. Xie Y, Zhao X, Chen J, Yang X, Ho SH, Wang B, Chang JS, Shen Y (2017) Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresour Technol 244:664–671. https://doi.org/10.1016/j.biortech.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  83. D’Alessandro EB, Soares AT, da Costa DC, Silva Neto HdA, Fernandes VdO, Antoniosi Filho NR (2018) A thermal water microalga: Eutetramorus planctonicus as a promising source of fatty acids and lutein. J Environ Chem Eng 6(5):6707–6713. https://doi.org/10.1016/j.jece.2018.10.038

    Article  CAS  Google Scholar 

  84. Heo J, Shin DS, Cho K, Cho DH, Lee YJ, Kim HS (2018) Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res 33:1–7. https://doi.org/10.1016/j.algal.2018.04.029

    Article  Google Scholar 

  85. Antonio M, Sanjeet M, Despina K, Simeone C, Dino M (2019) Bench-scale cultivation of microalgae scenedesmus almeriensis for CO2 capture and lutein production. Energies 12(14):2806. https://doi.org/10.3390/en12142806

    Article  CAS  Google Scholar 

  86. Chen WC, Hsu YC, Chang JS, Ho SH, Wang LF, Wei YH (2019) Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresour Technol 291:121891. https://doi.org/10.1016/j.biortech.2019.121891

    Article  CAS  PubMed  Google Scholar 

  87. Schuler LM, Santos T, Pereira H, Duarte P, Gangadhar KN, Florindo C, Schulze PS, Barreira L, Varela JCS (2020) Improved production of lutein and beta-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmissp. CTP4 Algal Res 45:101732. https://doi.org/10.1016/j.algal.2019.101732

    Article  Google Scholar 

  88. Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318. https://doi.org/10.1016/S0141-0229(00)00208-8

    Article  CAS  PubMed  Google Scholar 

  89. Garbayo I, Cuaresma M, Vílchez C, Vega JM (2008) Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem 43(10):1158–1161. https://doi.org/10.1016/j.procbio.2008.06.012

    Article  CAS  Google Scholar 

  90. Xiao Y, He Xi, Ma Qi, Yue Lu, Bai F, Dai J, Qingyu Wu (2018) Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Mar Drugs 16(8):283. https://doi.org/10.3390/md16080283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sampathkumar S, Gothandam KM (2019) Sodium bicarbonate augmentation enhances lutein biosynthesis in green microalgae Chlorella pyrenoidosa. Biocatal Agric Biotechnol 22:101406. https://doi.org/10.1016/j.bcab.2019.101406

    Article  Google Scholar 

  92. Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2017) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36(1):54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  93. Zhao X, Ma R, Liu X, Ho SH, Xie Y, Chen J (2019) Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess Biosyst Eng 42(3):435–443. https://doi.org/10.1007/s00449-018-2047-4

    Article  CAS  PubMed  Google Scholar 

  94. Li D, Yuan Y, Cheng D, Zhao Q (2019) Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10 Bioresour Technol 291:121783. https://doi.org/10.1016/j.biortech.2019.121783

    Article  CAS  PubMed  Google Scholar 

  95. Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76(1):51–59. https://doi.org/10.1016/S0168-1656(99)00178-9

    Article  PubMed  Google Scholar 

  96. Pinnola A, Bassi R (2018) Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans 46(2):467–482. https://doi.org/10.1042/BST20170307

    Article  CAS  PubMed  Google Scholar 

  97. Liguori N, Periole X, Marrink S, Croce R (2015) From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). Sci Rep 5:15661. https://doi.org/10.1038/srep15661

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Huang J, Hankamer B, Yarnold J (2019) Design scenarios of outdoor arrayed cylindrical photobioreactors for microalgae cultivation considering solar radiation and temperature. Algal Res 41:101515. https://doi.org/10.1016/j.algal.2019.101515

    Article  Google Scholar 

  99. Sánchez J, Fernández-Sevilla J, Acién F, Cerón M, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbol Biotechnol 79(5):719–729. https://doi.org/10.1007/s00253-008-1494-2

    Article  CAS  Google Scholar 

  100. Pau Loke S, Tan J, Lee SY, Kit Wayne C, Lam M, Lim JW, Ho SH (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11(1):116–129. https://doi.org/10.1080/21655979.2020.1711626

    Article  CAS  Google Scholar 

  101. Zhang B, Geng Y, Li Z, Hu H, Li Y (2009) Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275–281. https://doi.org/10.1016/j.aquaculture.2009.06.043

    Article  CAS  Google Scholar 

  102. Morales-Sánchez D, Martinez-Rodriguez O, Martinez A (2016) Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J Chem Technol Biotechnol 92(5):925–936. https://doi.org/10.1002/jctb.5115

    Article  CAS  Google Scholar 

  103. Wang F, Gao B, Wu M, Huang L, Zhang C (2019) A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res 39:101466. https://doi.org/10.1016/j.algal.2019.101466

    Article  Google Scholar 

  104. Granata T (2017) Dependency of microalgal production on biomass and the relationship to yield and bioreactor scale-up for biofuels: a statistical analysis of 60+ years of algal bioreactor data. Bioenerg Res 10(1):267–287. https://doi.org/10.1007/s12155-016-9787-2

    Article  CAS  Google Scholar 

  105. Norsker NH (2020) Scale-up of microalgae-based processes. Jacob-Lopes E. Handbook of microalgae-based processes and products. Academic press, Mroneze MM, Queiroz MI, Zepka LQ, pp 861–883

    Google Scholar 

  106. Molina E, Fernandez JM, Acien FG, Sánchez JF, García J, Magán JJ, Pérez J (2005) Production of lutein from the microalga Scenedesmus almeriensis in an industrial size photobioreactor: case study. In oral presentation at the 10th internacional conference on applied phycology, Kunming, China.

  107. Campo JA, García-González M, Guerrero M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. https://doi.org/10.1007/s00253-007-0844-9

    Article  CAS  PubMed  Google Scholar 

  108. Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W, Ong HC, Xu J (2021) Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sust Energ Rev 135:110209. https://doi.org/10.1016/j.rser.2020.110209

    Article  Google Scholar 

  109. Butler T, Acurio K, Mukherjee J, Dangasuk MM, Corona O, Vaidyanathan S (2021) The transition away from chemical flocculants: commercially viable harvesting of Phaeodactylum tricornutum. Sep Purif Technol 255:117733. https://doi.org/10.1016/j.seppur.2020.117733

    Article  CAS  Google Scholar 

  110. Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23(5):849–855. https://doi.org/10.1007/s10811-010-9591-x

    Article  PubMed  Google Scholar 

  111. Butler T, Guimaraes B (2021) Industrial perspective on downstream processing of Haematococcus pluvialis. In: Gokare AR, Ambati RR (ed) Global perspectives on astaxanthin. Academic press, 283–311

  112. Ruiz-Domínguez MC, Marticorena P, Sepúlveda C, Salinas F, Cerezal P, Riquelme C (2020) Effect of drying methods on lutein content and recovery by supercritical extraction from the microalga Muriellopsis sp. (MCH35) cultivated in the Arid North of Chile. Mar Drugs 18(11):528. https://doi.org/10.3390/md18110528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101. https://doi.org/10.1016/j.biombioe.2012.06.034

    Article  CAS  Google Scholar 

  114. Taucher J, Baer S (2016) Cell disruption and pressurized liquid extraction of carotenoids from microalgae. J Thermodyn Catal 07. https://doi.org/10.4172/2157-7544.1000158

  115. Low KL, Idris A, Mohd Yusof N (2020) Novel protocol optimized for microalgae lutein used as food additives. Food Chem 307:125631. https://doi.org/10.1016/j.foodchem.2019.125631

    Article  CAS  PubMed  Google Scholar 

  116. Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7. https://doi.org/10.3390/biology7010018

  117. Jeevan Kumar SP, Vijay Kumar G, Dash A, Scholz P, Banerjee R (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147. https://doi.org/10.1016/j.algal.2016.11.014

    Article  Google Scholar 

  118. Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: a review. Algal Res 38:101413. https://doi.org/10.1016/j.algal.2019.101413

    Article  Google Scholar 

  119. Chan MC, Ho SH, Lee DJ, Chen CY, Huang CC, Chang JS (2013) Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochem Eng J 78:24–31. https://doi.org/10.1016/j.bej.2012.11.017

    Article  CAS  Google Scholar 

  120. Gong M, Li X, Bassi A (2018) Investigation of simultaneous lutein and lipid extraction from wet microalgae using nile red as solvatochromic shift probe. J Appl Phycol 30(3):1617–1627. https://doi.org/10.1007/s10811-018-1405-6

    Article  CAS  Google Scholar 

  121. Saini RK, Keum YS (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103. https://doi.org/10.1016/j.foodchem.2017.07.099

    Article  CAS  PubMed  Google Scholar 

  122. Soto-Sierra L, Stoykova P, Nikolov ZL (2018) Extraction and fractionation of microalgae-based protein products. Algal Res 36:175–192. https://doi.org/10.1016/j.algal.2018.10.023

    Article  Google Scholar 

  123. Paliwal C, Rehmanji M, Shaikh KM, Zafar SU, Jutur PP (2022) Green extraction processing of lutein from Chlorella saccharophila in water-based ionic liquids as a sustainable innovation in algal biorefineries. Algal Res 66:102809. https://doi.org/10.1016/j.algal.2022.102809

    Article  Google Scholar 

  124. Gong M, Wang Y, Bassi A (2017) Process analysis and modeling of a single-step lutein extraction method for wet microalgae. Appl Microb Biotech 101:8089–8099. https://doi.org/10.1007/s00253-017-8496-x

    Article  CAS  Google Scholar 

  125. Chen CY, JesiscaHsieh C, Lee DJ, Chang CH, Chang JS (2016) Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol 200:500–505. https://doi.org/10.1016/j.biortech.2015.10.071

    Article  CAS  PubMed  Google Scholar 

  126. Mary Leema JT, Persia Jothy T, Dharani G (2021) Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2)–process optimization. Food Chem 372:131151. https://doi.org/10.1016/j.foodchem.2021.131151

    Article  CAS  PubMed  Google Scholar 

  127. Khoo KS, Chong YM, Chang WS, Yap JM, Foo SC, Khoiroh I, Lau PL, Chew KW, Ooi CW, Show PL (2021) Permeabilization of Chlorella sorokiniana and extraction of lutein by distillable CO2-based alkyl carbamate ionic liquids. Sep Purif Technol 256:117471. https://doi.org/10.1016/j.seppur.2020.117471

    Article  CAS  Google Scholar 

  128. Patel AK, Vadrale AP, Tseng YS, Chen CW, Dong CD, Singhania RR (2022) Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. Bioresour Technol 351:126928. https://doi.org/10.1016/j.biortech.2022.126928

    Article  CAS  PubMed  Google Scholar 

  129. Soares AT, da Costa DC, Vieira AAH, Antoniosi Filho NR (2019) Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 5(4):e01529. https://doi.org/10.1016/j.heliyon.2019.e01529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Di G, Sanjeet S, Maria M, Vincenzo M, Patrizia L (2018) Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae. Mar Drugs 16(9):334. https://doi.org/10.3390/md16090334

    Article  CAS  Google Scholar 

  131. Mehariya S, Iovine A, Di G, Vincenzo S, Maria L (2019) Supercritical fluid extraction of lutein from Scenedesmus almeriensis. Molecules 24(7):1324. https://doi.org/10.3390/molecules24071324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cerón-García MC, González-López CV, Camacho-Rodríguez J, López-Rosales L, García-Camacho F, Molina-Grima E (2018) Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chem 257:316–324. https://doi.org/10.1016/j.foodchem.2018.02.154

    Article  CAS  PubMed  Google Scholar 

  133. Fan C, Liu Y, Shan Y, Cao X (2022) A priori design of new natural deep eutectic solvent for lutein recovery from microalgae. Food Chem 376:131930. https://doi.org/10.1016/j.foodchem.2021.131930

    Article  CAS  Google Scholar 

  134. Low KL, Idris A, Yusof NM (2022) An optimized strategy for lutein production via microwave-assisted microalgae wet biomass extraction process. Process Biochem 121:87–99. https://doi.org/10.1016/j.procbio.2022.06.014

    Article  CAS  Google Scholar 

  135. Lee KH, Jang YW, Kim H, Ki JS, Yoo HY (2021) Optimization of lutein recovery from Tetraselmis suecica by response surface methodology. Biomolecules 11(2):182. https://doi.org/10.3390/biom11020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Di Caprio F, Altimari P, Pagnanelli F (2020) Sequential extraction of lutein and β-carotene from wet microalgal biomass. J Chem Technol Biotechnol 95(11):3024–3033. https://doi.org/10.1002/jctb.6464

    Article  CAS  Google Scholar 

  137. Zhu Y, Li X, Wang Y, Ren L, Zhao Q (2021) Lutein extraction by imidazolium-based ionic liquid-water mixture from dried and fresh Chlorella sp. Algal Res 60:102528. https://doi.org/10.1016/j.algal.2021.102528

    Article  Google Scholar 

  138. Molino A, Mehariya S, Di Sanzo G, Larocca V, Martino M, Leone GP, Marino T, Chianese S, Balducchi R, Musmarra D (2020) Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: role of key parameters, technological achievements and challenges. J CO2 Util 36:196–209. https://doi.org/10.1016/j.jcou.2019.11.014

    Article  CAS  Google Scholar 

  139. Sosa Hernández J, Romero-Castillo K, Parra-Arroyo L, Aguilar Aguila Isaías M, García I, Ahmed I, Parra R, Bilal M, Iqbal H (2019) Mexican microalgae biodiversity and state-of-the-art extraction strategies to meet sustainable circular economy challenges: high-value compounds and their applied perspectives. Mari Drugs 17(3):174. https://doi.org/10.3390/md17030174

    Article  CAS  Google Scholar 

  140. Yen HW, Chiang WC, Sun CH (2012) Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J Taiwan Inst Chem Eng 43(1):53–57. https://doi.org/10.1016/j.jtice.2011.07.010

    Article  CAS  Google Scholar 

  141. Macías-Sánchez MD, Fernandez-Sevilla JM, Fernández FGA, García MCC, Grima EM (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123(3):928–935. https://doi.org/10.1016/j.foodchem.2010.04.076

    Article  CAS  Google Scholar 

  142. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2009) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 84(5):657–661. https://doi.org/10.1002/jctb.2096

    Article  CAS  Google Scholar 

  143. Ruen-Ngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M (2012) Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol 35(2):255–260. https://doi.org/10.1002/ceat.201100251

    Article  CAS  Google Scholar 

  144. Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou JH, Lin CSK (2020) Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J Hazard Mat 400:123258. https://doi.org/10.1016/j.jhazmat.2020.123258

    Article  CAS  Google Scholar 

  145. Granado F, Olmedilla B, Blanco I (2002) Serum depletion and bioavailability of lutein in type I diabetic patients. Eur J Nutr 41(2):47–53. https://doi.org/10.1007/s003940200007

    Article  CAS  PubMed  Google Scholar 

  146. Norkus EP, Norkus KL, Dharmarajan T, Schierle J, Schalch W (2010) Serum lutein response is greater from free lutein than from esterified lutein during 4 weeks of supplementation in healthy adults. J Am Coll Nutr 29(6):575–585. https://doi.org/10.1080/07315724.2010.10719896

    Article  CAS  PubMed  Google Scholar 

  147. Burdick EM (1956) Extraction and utilization of carotenes and xanthophylls. Econ Bot 10(3):267–279. https://doi.org/10.1007/BF02899007

    Article  CAS  Google Scholar 

  148. Khalid N, Barrow CJ (2018) Critical review of encapsulation methods for stabilization and delivery of astaxanthin. J Food Bioact 1:104–115. https://doi.org/10.31665/JFB.2018.1129

    Article  Google Scholar 

  149. Steiner B, McClements D, Davidov-Pardo G (2018) Encapsulation systems for lutein: a review. Trends Food Sci Technol 82:71–81. https://doi.org/10.1016/j.tifs.2018.10.003

    Article  CAS  Google Scholar 

  150. Tan C, Feng B, Zhang X, Xia W, Xia S (2016) Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food hydrocoll 52:774–784. https://doi.org/10.1016/j.foodhyd.2015.08.016

    Article  CAS  Google Scholar 

  151. Helgason T, Awad TS, Kristbergsson K, Decker EA, McClements DJ, Weiss J (2009) Impact of surfactant properties on oxidative stability of β-Carotene Encapsulated within solid lipid nanoparticles. J Agric Food Chem 57:8033–8040. https://doi.org/10.1021/jf901682m

    Article  CAS  PubMed  Google Scholar 

  152. Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Qin F (2015) Modulating effect of lipid bilayer–carotenoid interactions on the property of liposome encapsulation. Colloids Surf B 128:172–180. https://doi.org/10.1016/j.colsurfb.2015.02.004

    Article  CAS  Google Scholar 

  153. Anarjan N, Ping Tan C (2013) Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. Int J Food Sci Nutr 64(6):744–748. https://doi.org/10.3109/09637486.2013.783001

    Article  CAS  PubMed  Google Scholar 

  154. Goula AM, Adamopoulos KG (2012) A new technique for spray-dried encapsulation of lycopene. Drying Technol 30(6):641–652. https://doi.org/10.1080/07373937.2012.655871

    Article  CAS  Google Scholar 

  155. Dima S, Dima C, Iordăchescu G (2015) Encapsulation of functional lipophilic food and drug biocomponents. Food Eng Rev 7:417–438. https://doi.org/10.1007/s12393-015-9115-1

    Article  CAS  Google Scholar 

  156. Prata AS, Garcia L, Tonon RV, Hubinger MD (2013) Wall material selection for encapsulation by spray drying. J Colloid Sci Biotechnol 2:86–92. https://doi.org/10.1166/jcsb.2013.1039

    Article  CAS  Google Scholar 

  157. Álvarez-Henao MV, Saavedra N, Medina S, Cartagena CJ, Alzate LM, Londoño-Londoño J (2018) Microencapsulation of lutein by spray-drying: characterization and stability analyses to promote its use as a functional ingredient. Food Chem 256:181–187. https://doi.org/10.1016/j.foodchem.2018.02.059

    Article  CAS  PubMed  Google Scholar 

  158. Chang R, Yang J, Ge S, Zhao M, Liang C, Xiong L, Sun Q (2017) Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocoll 67:14–26. https://doi.org/10.1016/j.foodhyd.2016.12.023

    Article  CAS  Google Scholar 

  159. Liu W, Wang J, Li M, Tang W, Han J (2016) Molecular mechanism of the protective effect of monomer polyvinylpyrrolidone on antioxidants–experimental and computational studies. SAR QSAR Environ Res 27(12):1015–1027. https://doi.org/10.1080/1062936X.2016.1242092

    Article  CAS  PubMed  Google Scholar 

  160. Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50(6):515–532. https://doi.org/10.1080/10408390802565889

    Article  CAS  PubMed  Google Scholar 

  161. Nidhi B, Sharavana G, Ramaprasad TR, Vallikannan B (2015) Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats. Food Funct 6(2):450–460. https://doi.org/10.1039/C4FO00606B

    Article  CAS  PubMed  Google Scholar 

  162. Davidov-Pardo G, Gumus CE, McClements DJ (2016) Lutein-enriched emulsion-based delivery systems: influence of ph and temperature on physical and chemical stability. Food Chem 196:821–827. https://doi.org/10.1016/j.foodchem.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  163. Teo A, Lee SJ, Goh KKT, Wolber FM (2017) Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem 221:1269–1276. https://doi.org/10.1016/j.foodchem.2016.11.030

    Article  CAS  PubMed  Google Scholar 

  164. Weigel F, Weiss J, Decker EA, McClements DJ (2018) Lutein-enriched emulsion-based delivery systems: influence of emulsifiers and antioxidants on physical and chemical stability. Food Chem 242:395–403. https://doi.org/10.1016/j.foodchem.2017.09.060

    Article  CAS  PubMed  Google Scholar 

  165. Xu D, Aihemaiti Z, Cao Y, Teng C, Li X (2016) Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chem 202:156–164. https://doi.org/10.1016/j.foodchem.2016.01.052

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

All authors are thankful to the National Natural Science Foundation of China (Grant No. 22078308), Program for Science & Technology Innovative Research Team in the University of Henan Province (No.22IRTSTHN007) for financial support. A.S. acknowledges the support of the Russian Science Foundation (project #21–74-20004).

Author information

Authors and Affiliations

Authors

Contributions

Gul Muhammad: Writing—original draft; Writing—review & editing; Thomas O. Butler: Writing—original draft; Writing—review & editing; Bailing Chen, Yongkun Lv, Xiong, Xinqing Zhao, Anqi Zhao, A. E. Solovchenko and M. Mofijur: Writing—review & editing; Jingliang Xu: Writing—review & editing, Supervision; Validation; Funding acquisition; Md. Asraful Alam: Conceptualization, Writing—original draft; Writing—review & editing, Supervision; Funding acquisition; Project administration.

Corresponding authors

Correspondence to Jingliang Xu or Md. Asraful Alam.

Ethics declarations

Ethics approval

This study does not cover human participants and/or animal studies; thus, ethical receiving approval is not necessary.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Microalgae are the fastest-growing lutein source with important health benefits.

2. The bottlenecks in lutein biomanufacturing from microalgae are discussed.

3. Biotic and abiotic factors affecting microalgal lutein biosynthesis are discussed.

4. The process of lutein biosynthesis in microalgae and genetic manipulation is highlighted.

5. Lutein extraction and purification is evaluated.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, G., Butler, T.O., Chen, B. et al. Sustainable production of lutein—an underexplored commercially relevant pigment from microalgae. Biomass Conv. Bioref. 14, 7255–7276 (2024). https://doi.org/10.1007/s13399-022-03349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03349-5

Keywords

Navigation