Skip to main content
Log in

A review on pectin extraction methods using lignocellulosic wastes

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Agricultural lignocellulose wastes are highly applicable as a substrate for the production of value-added products (e.g., pectin). Pectin is widely used in the food industry, pharmaceutical, and cosmetic products. So, pectin extraction is of importance. The common method for pectin extraction is based on the acid hydrolysis process. Recently, the use of novel methods is necessary due to the limitation of conventional approaches. This review article aims to consider different methods of pectin extraction from lignocellulosic wastes. In the present article after an overview of the application of pectin in the food industry, pectin effects on human health are mentioned. Afterward, conventional (acidic extraction) and novel (microwave, ultrasound, subcritical water, high pressure, and enzymatic) extraction methods of pectin are discussed in detail. The information of this article could be useful for investigators who want to apply lignocellulosic wastes for pectin extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Dominiak M, Søndergaard KM, Wichmann J, Vidal-Melgosa S, Willats WGT, Meyer AS, Mikkelsen JD (2014) Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll 40:273–282. https://doi.org/10.1016/j.foodhyd.2014.03.009

    Article  Google Scholar 

  2. Fraterrigo Garofalo S, Tommasi T, Fino D (2020) A short review of green extraction technologies for rice bran oil. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00846-3

    Article  Google Scholar 

  3. Picot-Allain MCN, Ramasawmy B (2020) Emmambux MN (2020) Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: a review. Food Rev Int 10(1080/87559129):1733008

    Google Scholar 

  4. Vani MM, Rao DG (2019) Effective diffusivity coefficients for degradation of pectin in guava (Psidium guajava L.) pulps using immobilized pectinase. Appl Food Biotechnol 6(2): 119–126. https://doi.org/10.22037/afb.v6i2.23307

  5. Tan H, Chen W, Liu Q, Yang G, Li K (2018) Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress-and inflammation-activated signaling pathways. Front Immunol 9:1504–1517. https://doi.org/10.3389/fimmu.2018.01504

    Article  Google Scholar 

  6. Ravindran R, Hassan SS, Williams GA, Jaiswal AK (2018) A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioeng 5(4):93. https://doi.org/10.3390/bioengineering5040093

    Article  Google Scholar 

  7. Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry an overview. Ind J Natur Prod Resour 2:10–18

    Google Scholar 

  8. Bagherian H, Zokaee Ashtiani F, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process 50:1237–1243. https://doi.org/10.1016/j.cep.2011.08.002

    Article  Google Scholar 

  9. Guo X, Hana D, Xia H, Raoa L, Liaoa X, Hua X, Wua J (2011) Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohydr Polym 88(2):441–448. https://doi.org/10.1016/j.carbpol.2011.12.026

    Article  Google Scholar 

  10. Hu F, Zhang Y, Wang P, Wu S, Jin Y (2018) Comparison of the interactions between fungal cellulases from different origins and cellulose nanocrystal substrates with different polymorphs. Cellulose 25:1185–1195. https://doi.org/10.1007/s10570-017-1629-7

    Article  Google Scholar 

  11. Sundarraj AA, Ranganathan TV (2017) A review - pectin from agro and industrial waste. Int J Appl Environ Sci 12(10):1777–1801

    Google Scholar 

  12. Ptichkina NM, Markina OA, Rumyantseva GN (2008) Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocoll 22(1):192–195. https://doi.org/10.1016/j.foodhyd.2007.04.002

    Article  Google Scholar 

  13. Bhatia L, Sharma A, Bachheti RK, Chandel AK (2019) Lignocellulose derived functional oligosaccharides: production, properties, and health benefits. Prep Biochem Biotechnol 49:744–758. https://doi.org/10.1080/10826068.2019.1608446

    Article  Google Scholar 

  14. Maric M, Grassino AN, Zhu Z, Barba FJ, Brncic M, Brncic SR (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37. https://doi.org/10.1016/j.tifs.2018.03.022

    Article  Google Scholar 

  15. Vanitha T, Khan M (2019) Role of pectin in food processing and food packaging. In: Pectins - Extraction, Purification, Characterization and Applications. https://doi.org/10.5772/intechopen.83677

  16. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13:673–690. https://doi.org/10.3390/ma13030673

    Article  Google Scholar 

  17. Ullah F, Bisyrul M, Othman H, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  Google Scholar 

  18. Nešic A, Gordic M, Davidovic S, Radovanovic Z, Nedeljkovic J, Smirnova I, Gurikov P (2018) Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr Polym 195:128–135. https://doi.org/10.1016/j.carbpol.2018.04.076

    Article  Google Scholar 

  19. Tingirikari JMR (2018) Microbiota-accessible pectic poly-and oligosaccharides in gut health. Food Funct 9:5059–5073. https://doi.org/10.1039/C8FO01296B

    Article  Google Scholar 

  20. Zaitseva O, Khudyakov A, Sergushkina M, Solomina O, Polezhaeva T (2020) Pectins as a universal medicine. Fitoterapia 146:104676. https://doi.org/10.1016/j.fitote.2020.104676

    Article  Google Scholar 

  21. Sundar Raj AA, Rubila S, Jayabalan R, Ranganathan TV (2012) A review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses 1(12):550–553. https://doi.org/10.4172/scientificreports.550

    Article  Google Scholar 

  22. Gómez B, Yáñez R, Parajó JC, Luis JL (2016) Production of pectin-derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. J Chem Technol Biotechnol 91:234–247. https://doi.org/10.1002/jctb.4569

    Article  Google Scholar 

  23. Chackoshian Khorasani A, Shojaosadati SA (2017) Improvement of probiotic survival in fruit juice and under gastrointestinal conditions using pectin-nanochitin-nanolignocellulose as a novel prebiotic gastrointestinal-resistant matrix. Appl Food Biotechnol 4(3): 179–191. https://doi.org/10.22037/afb.v4i3.17337

  24. Maran JP, Prakash KA (2015) Process variables influence on microwave assisted extraction of pectin from waste Carica papaya L. peel. Int J Biol Macromol 73:202–206. https://doi.org/10.1016/j.ijbiomac.2014.11.008

    Article  Google Scholar 

  25. Jeong HS, Kim HU, Ahn SH, Oh SC, Yang I, Choi IG (2014) Optimization of enzymatic hydrolysis conditions for extraction of pectin from rapeseed cake (Brassica napus L.) using commercial enzymes. Food Chem 157:332–338. https://doi.org/10.1016/j.foodchem.2014.02.040

    Article  Google Scholar 

  26. Peng XY, Mu TH, Zhang M, Sun HN, Chen JW, Yu M (2015) Optimisation of production yield by ultrasound-/microwave-assisted acid method and functional property of pectin from sugar beet pulp. Int J Food Sci Technol 50(3):758–765. https://doi.org/10.1111/ijfs.12678

    Article  Google Scholar 

  27. Adetunji LR, Adekunle A, Orsat V, Raghavan V (2017) Advances in the pectin production process using novel extraction techniques: a review. Food Hydrocoll 62:239–250. https://doi.org/10.1016/j.foodhyd.2016.08.015

    Article  Google Scholar 

  28. Machineni L (2020) Lignocellulosic biofuel production: review of alternatives. Biomass Conv Bioref 10:779–791. https://doi.org/10.1007/s13399-019-00445-x

    Article  Google Scholar 

  29. Khosravi-Darani K, Zoghi A (2008) Comparison of pretreatment strategies of sugarcane baggase: experimental design for citric acid production. Bioresour Technol 99:6986–6993. https://doi.org/10.1016/j.biortech.2008.01.024

    Article  Google Scholar 

  30. Asadi SZ, Khosravi-Darani K, Nikoopour H, Bakhoda H (2018) Production of arachidonic acid and eicosapentaenoic acid by Mortierella alpina CBS 528.72 on date waste. Food Technol Biotechnol 56(2): 197–207. https://doi.org/10.17113/ftb.56.02.18.5379

  31. Khosarvi-Darani K, Karamad D (2016) Solid state cultivation and application of xylanase. Pak J Biotechnol 13(2):147–156

    Google Scholar 

  32. Khosravi Darani K, Zoghi A, Alavi SA, Fatemi SSA (2008) Application of Plackett Burman design for citric acid production from pretreated and untreated wheat straw. Iran J Chem Chem Eng 27(1):91–104

    Google Scholar 

  33. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. https://doi.org/10.1016/j.bej.2013.10.013

    Article  Google Scholar 

  34. Arulanandham TV, Palaniswamy M (2014) Production of xylanase by Aspergillus nidulans isolated from litter soil using rice bran as substrate by solid state fermentation. World J Pharm Pharm Sci 7:1805–1813

    Google Scholar 

  35. Nguyen QA, Cho EJ, Lee DS, Bae HJ (2019) Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresour Technol 272:209–216. https://doi.org/10.1016/j.biortech.2018.10.018

    Article  Google Scholar 

  36. Moreira LRS, Filho EXF (2016) Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100:5205–5214. https://doi.org/10.1007/s00253-016-7555-z

    Article  Google Scholar 

  37. Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87(2):995–1012. https://doi.org/10.1016/j.carbpol.2011.09.063

    Article  Google Scholar 

  38. Mota TR, Oliveira DM, Morais GR, Marchiosi R (2019) Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind Crops Prod 140:111657. https://doi.org/10.1016/j.indcrop.2019.111657

    Article  Google Scholar 

  39. Di Donato P, Polia A, Taurisano V, Nicolaus B (2014) Polysaccharides: applications in biology and biotechnology/polysaccharides from bioagro-waste new biomolecules-life. In: Mérillon JM (ed) Ramawat K. Springer, Cham, pp 1–29

    Google Scholar 

  40. Sayah MY, Chabir R, El Madani N, Rodi El Kandri Y, Ouazzanichahdi F, Touzani H, Errachid F (2014) Comparative study on pectin yield according to the state of the orange peels and acids used. Int J Innov Res Sci Eng Technol 3(8): 15658–15665. https://doi.org/10.15680/IJIRSET.2014.0308078

  41. Vriesmann LC, Teófilo RF, de Oliveira Petkowicz CL (2011) Optimization of nitric acid mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) using response surface methodology. Carbohydr Polym 84(4): 1230–1236. https://doi.org/10.1016/j.carbpol.2011.01.009

  42. Oliveira CF, Giordani D, Lutckemier R, Deyse Gurak P, Cladera-Olivera F, Marczak LDF (2016) Extraction of pectin from passion fruit peel assisted by ultrasound. LWT - Food Sci Technol 71:110–115. https://doi.org/10.1016/j.lwt.2016.03.027

    Article  Google Scholar 

  43. Kurita O, Fujiwara T, Yamazaki E (2008) Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydr Polym 74(3):725–730. https://doi.org/10.1016/j.carbpol.2008.04.033

    Article  Google Scholar 

  44. Oliveira TIS, Rosa MF, Cavalcante FL, Pereira PHF, Moates GK, Wellner N et al (2016) Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem 198:113–118. https://doi.org/10.1016/j.foodchem.2015.08.080

    Article  Google Scholar 

  45. Pereira PHF, Oliveira TIS, Rosa MF, Cavalcante FL, Moates GK, Wellner N et al (2016) Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol 88:373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074

    Article  Google Scholar 

  46. Ma S, Yu SJ, Zheng XL, Wang XX, Bao QD, Guo XM (2013) Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr Polym 98(1):750–753. https://doi.org/10.1016/j.carbpol.2013.06.042

    Article  Google Scholar 

  47. Quoc LPT, Huyen VTN, Hue LTN, Hue NTH, Thuan NHD, Tam NTT, Thuan NN, Duy TH (2015) Extraction of pectin from pomelo (Citrus maxima) peels with the assistance of microwave and tartaric acid. Int Food Res J 22(4):1637–1641

    Google Scholar 

  48. Sharma PC, Gupta A, Kaushal P (2014) Optimization of method for extraction of pectin from apple pomace. Ind J Natur Prod Resour 5(2):184–189

    Google Scholar 

  49. Kaya M, Sousa AG, Crépeau MJ, Sørensen SO, Ralet MC (2014) Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann Bot 114(6):1319–1326. https://doi.org/10.1093/aob/mcu150

    Article  Google Scholar 

  50. Azad AKM, Ali M, Sorifa A, Akter M, Jiaur Rahman M, Ahmed M (2014) Isolation and characterization of pectin extracted from lemon pomace during ripening. J Food Nutr Sci 2(2): 30–35. https://doi.org/10.11648/j.jfns.20140202.12

  51. Shrotri A, Kobayashi H, Fukuoka A (2018) Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res 51(3):761–768. https://doi.org/10.1021/acs.accounts.7b00614

    Article  Google Scholar 

  52. Wikiera A, Mika M, Grabacka M (2015) Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocoll 44:156–161. https://doi.org/10.1016/j.foodhyd.2014.09.018

    Article  Google Scholar 

  53. Rahmani Z, Khodaiyan F, Kazemi M, Sharifan A (2020) Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. Int J Biol Macromol 147:1107–1115. https://doi.org/10.1016/j.ijbiomac.2019.10.079

    Article  Google Scholar 

  54. Wang H, Ding J, Ren N (2016) Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC Trends Anal Chem 75:197–208. https://doi.org/10.1016/j.trac.2015.05.005

    Article  Google Scholar 

  55. Kumar M, Tomar M, Saurabh V, Mahajan T, Punia S, Contreras MM, Rudra SG, Kaur C, Kennedy JF (2020) Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends Food Sci Technol 105:223–230. https://doi.org/10.1016/j.tifs.2020.09.009

    Article  Google Scholar 

  56. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, AbertVian M (2017) Review of green food processing techniques. preservation, transformation, and extraction. Innov Food Sci Emerg Technol 41:357–377. https://doi.org/10.1016/j.ifset.2017.04.016

    Article  Google Scholar 

  57. Pangestu R, Amanah S, Juanssilfero AB, Perwitasari U (2020) Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. J Food Meas Charact 14(4):2126–2133. https://doi.org/10.1007/s11694-020-00459-4

    Article  Google Scholar 

  58. Thirugnanasambandham K, Sivakumar V (2015) Application of D-optimal design to extract the pectin from lime bagasse using microwave green irradiation. Int J Biol Macromol 72:1351–1357. https://doi.org/10.1016/j.ijbiomac.2014.09.054

    Article  Google Scholar 

  59. Thirugnanasambandham K, Sivakumar V, Prakash Maran J (2014) Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr Polym 112:622–626. https://doi.org/10.1016/j.carbpol.2014.06.044

    Article  Google Scholar 

  60. Dranca F, Vargas M, Oroian M (2020) Physicochemical properties of pectin from Malus domestica ‘F¢alticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll 100:105383. https://doi.org/10.1016/j.foodhyd.2019.105383

    Article  Google Scholar 

  61. Su DL, Li PJ, Quek SY, Huang ZQ, Yuan YJ, Li GY (2019) Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chem 286:1–7. https://doi.org/10.1016/j.foodchem.2019.01.200

    Article  Google Scholar 

  62. Sucheta N, Misra N, Yadav SK (2020) Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: kinetics, characterization and process economics. Food Hydrocoll 102:105592. https://doi.org/10.1016/j.foodhyd.2019.105592

    Article  Google Scholar 

  63. Rodsamran P, Sothornvit R (2019) Microwave heating extraction of pectin from lime peel: characterization and properties compared with the conventional heating method. Food Chem 278:364–372. https://doi.org/10.1016/j.foodchem.2018.11.067

    Article  Google Scholar 

  64. Rahmati S, Abdullah A, Kang OL (2019) Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels. Bioact Carbohydr Diet Fibre 18:100186. https://doi.org/10.1016/j.bcdf.2019.100186

    Article  Google Scholar 

  65. Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N, Chemat F (2015) Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason Sonochem 24:72–79. https://doi.org/10.1016/j.ultsonch.2014.11.015

    Article  Google Scholar 

  66. Chen Q, Hu Z, Yao FYD, Liang H (2016) Study of two-stage microwave extraction of essential oil and pectin from pomelo peels. LWT - Food Sci Technol 66:538–545. https://doi.org/10.1016/j.lwt.2015.11.019

    Article  Google Scholar 

  67. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym 140:59–65. https://doi.org/10.1016/j.carbpol.2015.12.051

    Article  Google Scholar 

  68. Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97(2):703–709. https://doi.org/10.1016/j.carbpol.2013.05.052

    Article  Google Scholar 

  69. Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr Polym 101(1):786–791. https://doi.org/10.1016/j.carbpol.2013.09.062

    Article  Google Scholar 

  70. Swamy GJ, Muthukumarappan K (2017) Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem 220:108–114. https://doi.org/10.1016/j.foodchem.2016.09.197

    Article  Google Scholar 

  71. Seixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLO, Jagadevan S, Gimenes ML (2014) Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll 38:186–192. https://doi.org/10.1016/j.foodhyd.2013.12.001

    Article  Google Scholar 

  72. Shivamathi CS, Moorthy IG, Kumar RV, Soosai MR, Maran JP, Kumar RS (2019) Optimization of ultrasound assisted extraction of pectin from custard apple peel: potential and new source. Carbohydr Polym 225:115240. https://doi.org/10.1016/j.carbpol.2019.115240

    Article  Google Scholar 

  73. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z (2019) Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 125:621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096

    Article  Google Scholar 

  74. Kazemi M, Khodaiyan F, Labbafi M, Hosseini SS (2020) Ultrasonic and heating extraction of pistachio by-product pectin: physicochemical, structural characterization and functional measurement. J Food Meas Charact 14(2):679–693. https://doi.org/10.1007/s11694-019-00315-0

    Article  Google Scholar 

  75. Zaid RM, Mishra P, Tabassum S, Wahid ZA, Sakinah AMM (2019) High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: extraction kinetics and thermodynamic studies. Int J Biol Macromol 141:1147–1157. https://doi.org/10.1016/j.ijbiomac.2019.09.017

    Article  Google Scholar 

  76. Guandalini BBV, Rodrigues NP, Marczak LDF (2019) Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res Int 119:455–461. https://doi.org/10.1016/j.foodres.2018.12.011

    Article  Google Scholar 

  77. Asgari K, Labbafi M, Khodaiyan F, Kazemi M, Hosseini SS (2020) High methylated pectin from walnut processing wastes as a potential resource: ultrasound assisted extraction and physicochemical, structural and functional analysis. Int J Biol Macromol 152:1274–1282. https://doi.org/10.1016/j.ijbiomac.2019.10.224

    Article  Google Scholar 

  78. Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS (2015) Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int J Biol Macromol 72:1323–1328. https://doi.org/10.1016/j.ijbiomac.2014.10.037

    Article  Google Scholar 

  79. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Engin 126:72–81. https://doi.org/10.1016/j.jfoodeng.2013.11.004

    Article  Google Scholar 

  80. Ma X, Jing J, Wang J, Xu J, Hu Z (2020) Extraction of low methoxyl pectin from fresh sunflower heads by subcritical water extraction. ACS Omega 5(25):15095–15104. https://doi.org/10.1021/acsomega.0c00928

    Article  Google Scholar 

  81. Dias IP, Barbieri SF, Fetzer DEL, Corazza ML, Silveira JLM (2020) Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 146:431–443. https://doi.org/10.1016/j.ijbiomac.2019.12.261

    Article  Google Scholar 

  82. Liew SQ, Chin NL, Yusof YA, Sowndhararajan K (2016) Comparison of acidic and enzymatic pectin extraction from passion fruit peels and its gel properties. J Food Process Eng 39(5):501–511. https://doi.org/10.1111/jfpe.12243

    Article  Google Scholar 

  83. Vasco-Correa J, Zapata ZAD (2017) Enzymatic extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) at laboratory and bench scale. Lebensmittel- Wissenschaft Technol 80:280–285. https://doi.org/10.1016/j.lwt.2017.02.024

    Article  Google Scholar 

  84. Sabater C, Corzo N, Olano A, Montilla A (2018) Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L. Carbohydr Polym 190:43–49. https://doi.org/10.1016/j.carbpol.2018.02.055

    Article  Google Scholar 

  85. Bayar N, Friji M, Kammoun R (2018) Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chem 241:127–134. https://doi.org/10.1016/j.foodchem.2017.08.051

    Article  Google Scholar 

  86. Zhu Z, Wu Q, Di X, Li S, Barba FJ, Koubaa M et al (2017) Multistage recovery process of seaweed pigments: investigation of ultrasound assisted extraction and ultra-filtration performances. Food Bioprod Proces 104:40–47. https://doi.org/10.1016/j.fbp.2017.04.008

    Article  Google Scholar 

  87. Polanco-Lugo E, Martínez-Castillo JI, Cuevas-Bernardino JC, Gonz´alez-Flores T, Valdez-Ojeda R, Pacheco N, et al (2019) Citrus pectin obtained by ultrasound assisted extraction: physicochemical, structural, rheological and functional properties. CyTA - J Food 17(1):463–471. https://doi.org/10.1080/19476337.2019.1600036

    Article  Google Scholar 

  88. Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C (2014) Ultrasound-assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carbohydr Polym 106(1):179–189. https://doi.org/10.1016/j.carbpol.2014.02.013

    Article  Google Scholar 

  89. Nova MV, Nothnagel L, Thurn M, Travassos PB, Herculano LS, Bittencourt PRS et al (2019) Development study of pectin/Surelease® solid microparticles for the delivery of L-alanyl-L-glutamine dipeptide. Food Hydrocoll 89:921–932. https://doi.org/10.1016/j.foodhyd.2018.11.038

    Article  Google Scholar 

  90. Zhang J, Wen C, Zhang H, Duan Y, Ma H (2020) Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trend Food Sci Technol 95:183–195. https://doi.org/10.1016/j.tifs.2019.11.018

    Article  Google Scholar 

  91. Chen J, Zhang C, Xia Q, Liu D, Tan X, Li Y, et al. (2020) Treatment with subcritical water-hydrolyzed citrus pectin ameliorated cyclophosphamide-induced immunosuppression and modulated gut microbiota composition in ICR mice. Molecules, 25(6). https://doi.org/10.3390/molecules25061302

  92. Xie F, Zhang W, Lan X, Gong S, Wu J, Wang Z (2018) Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr Polym 196:474–482. https://doi.org/10.1016/j.carbpol.2018.05.061

    Article  Google Scholar 

  93. Cano ME, García-Martin A, Comendador Morales P, Wojtusik M, Santos VE, Kovensky J, Ladero M (2020) Production of oligosaccharides from agrofood wastes. Fermentation 6:31–58. https://doi.org/10.3390/fermentation6010031

    Article  Google Scholar 

  94. Yuliarti O, Matia-Merino L, Goh KKT, Mawson J, Williams MAK, Brennan MAK (2015) Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chem 166:479–485. https://doi.org/10.1016/j.foodchem.2014.06.055

    Article  Google Scholar 

  95. Zykwinska A, Gaillard C, Boiffard MH, Thibault JF, Bonin E (2009) “Green labelled” pectins with gelling and emulsifying properties can be extracted by enzymatic way from unexploited sources. Food Hydrocoll 23:2468–2477. https://doi.org/10.1016/j.foodhyd.2009.07.010

    Article  Google Scholar 

  96. Zykwinska A, Boiffard MH, Kontkanen H, Buchert J, Thibault JF, Bonin E (2008) Extraction of green labelled pectins and pectic oligosaccharides from plant byproducts. J Agric Food Chem 56:8926–8935. https://doi.org/10.1021/jf801705a

    Article  Google Scholar 

  97. Fissore EN, Ponce NM, Wider EA, Stortz CA, Gerschenson LN, Rojas AM (2009) Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). J Food Eng 93(3):293–301. https://doi.org/10.1016/j.jfoodeng.2009.01.024

    Article  Google Scholar 

  98. Wikiera A, Mika M, Starzy´nska-Janiszewska A, Stodolak B, (2015) Development of complete hydrolysis of pectins from apple pomace. Food Chem 17:675–680. https://doi.org/10.1016/j.foodchem.2014.09.132

    Article  Google Scholar 

  99. Marques NP, De Cassia PJ, Gomes E, Da Silva R, Araújo AR, Ferreira H, Rodrigues A, Johana Dussán K, Alonso Bocchini D (2018) Production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crops Prod 122:66–75. https://doi.org/10.1016/j.indcrop.2018.05.022

    Article  Google Scholar 

  100. Røjel N, Kari J, Borch K, Westh P (2019) pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnol Bioeng 117:382–391. https://doi.org/10.1002/bit.27206

    Article  Google Scholar 

  101. Jugwanth Y, Sewsynker-Sukai Y, Kana EBG (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel 262:116552. https://doi.org/10.1016/j.fuel.2019.116552

    Article  Google Scholar 

  102. Liu Z, Yao L, Fanl C (2015) Optimization of fermentation conditions of pectin production from Aspergillus terreus and its partial characterization Zhanmin. Carbohydr Polym 134:627–634. https://doi.org/10.1016/j.carbpol.2015.08.032

    Article  Google Scholar 

  103. Liu ZM, Fan CH, Yao LF, Wan SB, Hu YJ (2012) Isolation and identification a tannin tolerant fungus producing protopectinase. Afr J Microbiol Res 6(9):2156–2161. https://doi.org/10.5897/AJMR11.1610

    Article  Google Scholar 

  104. Lim J, Yoo J, Ko S, Lee S (2012) Extraction and characterization of pectin from Yuza (Citrus junos) pomace: a comparison of conventional-chemical and combined physical enzymatic extraction. Food Hydrocoll 29:160–165. https://doi.org/10.1016/j.foodhyd.2012.02.018

    Article  Google Scholar 

  105. Arnous A, Meyer AS (2009) Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. J Agric Food Chem 57:3611–3619. https://doi.org/10.1021/jf900780r

    Article  Google Scholar 

  106. Yang Y, Wang Z, Hu D, Xiao K, Wu JY (2018) Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocoll 79:189–196. https://doi.org/10.1016/j.foodhyd.2017.11.051

    Article  Google Scholar 

  107. Zhao W, Guo X, Pang X, Gao L, Liao X, Wu J (2015) Preparation and characterization of low methoxyl pectin by high hydrostatic pressure-assisted enzymatic treatment compared with enzymatic method under atmospheric pressure. Food Hydrocoll 50:44–53. https://doi.org/10.1016/j.foodhyd.2015.04.004

    Article  Google Scholar 

  108. Chen HM, Fu X, Luo ZG (2015) Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem 168:302–310. https://doi.org/10.1016/j.foodchem.2014.07.078

    Article  Google Scholar 

  109. Xu SY, Liu JP, Huang XXT, Du LP, Shi FL, Dong R et al (2018) Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel. Lebensmittel-Wissenschaft Technol 90:577–582. https://doi.org/10.1016/j.lwt.2018.01.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Zohreh Hamidi Esfahani or Kianoush Khosravi-Darani.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoghi, A., Vedadi, S., Esfahani, Z.H. et al. A review on pectin extraction methods using lignocellulosic wastes. Biomass Conv. Bioref. 13, 5577–5589 (2023). https://doi.org/10.1007/s13399-021-02062-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02062-z

Keywords

Navigation