Skip to main content

Advertisement

Log in

A comprehensive perspective on sustainable bioprocessing through extractive fermentation: challenges and prospects

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Extractive fermentation is a potential process intensification integrated with aqueous two-phase extraction for simultaneous in-situ product recovery during fermentation to improve the efficiency of any bioprocess industry. This minimizes the innate product inhibitions, recovery, operational issues, and sustainability during conventional fermentation. The efficiency of the extraction process is hampered by the toxicity, non-biodegradability, and recycling of solvents associated with two-phase extraction. In comparison to conventional fermentation and purification techniques, extractive fermentation has several benefits such as higher product yields, lower costs for subsequent processing, and the ability to synthesize molecules that are challenging to recover using traditional methods. Extractive fermentation is a sustainable method for enhanced product recovery with the adaptability of reactor and solvent recyclability. An in-depth discussion of the necessity for this technology, the significance of green solvent selectivity, reactor modification at the standpoint of green engineering is addressed in this review. The overview aims to shed light on the importance of life cycle assessment and economic analysis on process integration in facilitating the development of more eco-friendly bioprocessing systems for replacing in-situ extraction technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd-Alla M, El-Enany, A.w. (2012) Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenerg 42:172–178

    Article  CAS  Google Scholar 

  • Almeida LP, Silva CR, Martins TB, Pereira RD, Esperança MN, Cruz AJG, Badino AC (2021) Heat transfer evaluation for conventional and extractive ethanol fermentations: saving cooling water. J Clean Prod 304:127063

    Article  CAS  Google Scholar 

  • Alves RO, de Oliveira RL, da Silva OS, Porto ALF, Porto CS, Porto TS (2021) Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-citrate aqueous two-phase system. Prep Biochem Biotechnol 52:1–8

    Google Scholar 

  • Alves RO, de Oliveira RL, da Silva OS, Porto ALF, Porto CS, Porto TS (2022) Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-Citrate aqueous two-phase system. Prep Biochem Biotechnol 52(1):30–37

    Article  CAS  Google Scholar 

  • Amid M, Manap M, Hussin M, Mustafa S (2015a) A novel aqueous two phase system composed of surfactant and xylitol for the purification of lipase from pumpkin (Cucurbita moschata) seeds and recycling of phase components. Molecules 20(6):11184–11201

    Article  CAS  Google Scholar 

  • Amid M, Murshid FS, Manap MY, Hussin M (2015b) A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from <i>Psidium guajava</i> and recycling phase components. Biomed Res Int 2015:815413

    Article  Google Scholar 

  • Andlar M, Oros D, Rezić T, Ludwig R, Šantek B (2018) In-situ vacuum assisted gas stripping recovery system for ethanol removal from a column bioreactor. Fibers 6(4):88

    Article  CAS  Google Scholar 

  • Antecka A, Blatkiewicz M, Boruta T, Górak A, Ledakowicz S (2019) Comparison of downstream processing methods in purification of highly active laccase. Bioprocess Biosyst Eng 42(10):1635–1645

    Article  CAS  Google Scholar 

  • Arya SS, Kaimal AM, Chib M, Sonawane SK, Show PL (2019) Novel, energy efficient and green cloud point extraction: technology and applications in food processing. J Food Sci Technol 56(2):524–534

    Article  CAS  Google Scholar 

  • Asenjo JA, Andrews BA (2011) Aqueous two-phase systems for protein separation: a perspective. J Chromatogr A 1218(49):8826–8835

    Article  CAS  Google Scholar 

  • Ashok A, Doriya K, Rao DRM, Kumar DS (2017) Design of solid state bioreactor for industrial applications: an overview to conventional bioreactors. Biocatal Agric Biotechnol 9:11–18

    Article  Google Scholar 

  • Azevedo AM, Rosa PAJ, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247

    Article  CAS  Google Scholar 

  • Babu Balaraman H, Viswanathan G, Muniasamy R, Gayatri T, Kumar Rathnasamy S (2022) Sustainable valorization of papaya peels for thrombolytic cysteine protease isolation by ultrasound assisted disruptive liquid phase microextraction with task specific switchable natural deep eutectic solvents. Microchem J 175:107118

    Article  CAS  Google Scholar 

  • Bacon SL, Ross RJ, Daugulis AJ, Parent JS (2017) Imidazolium-based polyionic liquid absorbents for bioproduct recovery. Green Chem 19(21):5203–5213

    Article  CAS  Google Scholar 

  • Badhwar P, Kumar P, Dubey KK (2019) Extractive fermentation for process integration and amplified pullulan production by A. Pullulans in aqueous two phase systems. Sci Rep 9(1):32

    Article  Google Scholar 

  • Balaraman HB, Rathnasamy SK (2020) Kinetics and optimization of microwave-assisted lignin fractionation with Protic low transition temperature mixture of Sesamum indicum straw for enhanced bioethanol production. J Mol Liq 303:112660

    Article  CAS  Google Scholar 

  • Balaraman H, Sivasubramaniyam A, Rathnasamy S (2019) High selective purification of Quercetin from Peanut hull using protic deep eutectic mixture based liquid-liquid microextraction. Microchem J 152:104444

    Article  Google Scholar 

  • Balaraman HB, Sivasubramaniyam A, Rathnasamy SK (2020) High selective purification of Quercetin from Peanut hull using protic deep eutectic mixture based liquid–liquid microextraction. Microchem J 152:104444

    Article  CAS  Google Scholar 

  • Balaraman H, Selvasembian R, Rangarajan V, Rathnasamy S (2021) Sustainable and green engineering insights on deep eutectic solvents toward the extraction of nutraceuticals. ACS Sustain Chem Eng 9(34):11290–11313

    Article  CAS  Google Scholar 

  • Balaraman H, Purushotaman C, Chandramouliswaran K, Rathnasamy S (2022) Simultaneous production and sustainable eutectic mixture based purification of narringinase with Bacillus amyloliquefaciens by valorization of tofu wastewater. Sci Rep 12(1):10509

    Article  CAS  Google Scholar 

  • Banik RM, Santhiagu A (2002) Extractive fermentation for enhanced gellan-hydrolysing enzyme production by Bacillus thuringiensis H14. World J Microbiol Biotechnol 18(8):715–720

    Article  CAS  Google Scholar 

  • Banik RM, Santhiagu A, Kanari B, Sabarinath C, Upadhyay SN (2003) Technological aspects of extractive fermentation using aqueous two-phase systems. World J Microbiol Biotechnol 19(4):337–348

    Article  CAS  Google Scholar 

  • Bar R (1988) Ultrasound enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis. Biotechnol Bioeng 32(5):655–663

    Article  CAS  Google Scholar 

  • Bart H-J (2001) Reactive extraction. Springer, Berlin

    Book  Google Scholar 

  • Bauer G, Lima S, Chenevard J, Sugnaux M, Fischer F (2017) Biodiesel via in Situ wet microalgae biotransformation: zwitter-type ionic liquid supported extraction and transesterification. ACS Sustain Chem Eng 5(2):1931–1937

    Article  CAS  Google Scholar 

  • Baumann P, Hubbuch J (2016) Downstream process development strategies for effective bioprocesses: trends, progress, and combinatorial approaches. Eng Life Sci 17(11):1142–1158

    Article  Google Scholar 

  • Beschkov V, Yankov D (2021) Chemical engineering methods in downstream processing in biotechnology. Phys Sci Rev 6(4):20180064

    Google Scholar 

  • Birajdar SD, Padmanabhan S, Rajagopalan S (2014) Rapid solvent screening using thermodynamic models for recovery of 2,3-butanediol from fermentation by liquid-liquid extraction. J Chem Eng Data 59(8):2456–2463

    Article  CAS  Google Scholar 

  • Bisht M, Martins M, Dias ACRV, Ventura SPM, Coutinho JAP (2021) Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (Gadus morhua). Green Chem 23(22):8940–8948

    Article  CAS  Google Scholar 

  • Boontawan P, Kanchanathawee S, Boontawan A (2011) Extractive fermentation of L-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique. Biochem Eng J - Biochem Eng J 54:192–199

    Article  CAS  Google Scholar 

  • Bystrzanowska M, Tobiszewski M (2021) Assessment and design of greener deep eutectic solvents–A multicriteria decision analysis. J Mol Liq 321:114878

    Article  CAS  Google Scholar 

  • Cao X, Wang K, Feng X (2021) Perstraction of phenolic compounds via nonporous PEBA membranes. Sep Purif Technol 257:117928

    Article  CAS  Google Scholar 

  • Chávez-Castilla L, Aguilar O (2016) An integrated process for the in situ recovery of prodigiosin using micellar ATPS from a culture of Serratia marcescens. J Chem Technol Biotechnol 91:2896–2903

    Article  Google Scholar 

  • Chavez-Santoscoy A, Benavides Lozano J, Vermaas W, Rito-Palomares M (2010) Application of aqueous two-phase systems for the potential extractive fermentation of cyanobacterial products. Chem Eng Technol 33:177–218

    Article  CAS  Google Scholar 

  • Chen J-P, Lee M-S (1995) Enhanced production of Serratia marcescens chitinase in PEG/dextran aqueous two-phase systems. Enzyme Microb Technol 17(11):1021–1027

    Article  CAS  Google Scholar 

  • Chen G, Huang T, Bei Q, Tian X, Wu Z (2017) Correlation of pigment production with mycelium morphology in extractive fermentation of Monascus anka GIM 3.592. Process Biochem 58:42–50

    Article  CAS  Google Scholar 

  • Cheng HC, Wang FS (2008) Optimal biocompatible solvent design for a two-stage extractive fermentation process with cell recycling. Comput Chem Eng 32(7):1385–1396

    Article  CAS  Google Scholar 

  • Chun J, Choi O, Sang B-I (2018) Enhanced extraction of butyric acid under high-pressure CO2 conditions to integrate chemical catalysis for value-added chemicals and biofuels. Biotechnol Biofuels 11(1):119

    Article  Google Scholar 

  • da Silva AV, do Nascimento JM, Rodrigues CH, Silva Nascimento DC, Pedrosa Brandão Costa RM, de Araújo Viana Marques D, Lima Leite AC, Figueiredo MdVB, Pastrana L, Converti A, Nascimento, TP, Figueiredo Porto AL (2020) Partial purification of fibrinolytic and fibrinogenolytic protease from Gliricidia sepium seeds by aqueous two-phase system. Biocatal Agric Biotechnol 27:101669

    Article  Google Scholar 

  • Daugulis AJ, Axford DB, McLellan PJJCJOCE (1991) The economics of ethanol production by extractive fermentation. 69, 488–497.

  • del Mar Contreras-Gámez M, Galán-Martín Á, Seixas N, da Costa Lopes AM, Silvestre A, Castro E (2023) Deep eutectic solvents for improved biomass pretreatment: Current status and future prospective towards sustainable processes. Biores Technol 369:128396

    Article  Google Scholar 

  • Dhage A., Rathod V (2017a) Intensification of β-glucosidase enzyme production from Aspergillus Niger using extractive fermentation with an aqueous two-phase system. Green Process Synth 6

  • Dhage AB, Rathod VK (2017b) Intensification of β-glucosidase enzyme production from Aspergillus niger using extractive fermentation with an aqueous two-phase system. Green Processing and Synthesis 6(4):441–445

    Article  CAS  Google Scholar 

  • Dhamole PB, Wang Z, Liu Y, Wang B, Feng H (2012) Extractive fermentation with non-ionic surfactants to enhance butanol production. Biomass Bioenerg 40:112–119

    Article  CAS  Google Scholar 

  • Dharaiya N, Bahadur P (2012) Phenol induced growth in Triton X-100 micelles: Effect of pH and phenols’ hydrophobicity. Colloids Surf, A 410:81–90

    Article  CAS  Google Scholar 

  • Díaz M (1988) Three-phase extractive fermentation. Trends Biotechnol 6(6):126–130

    Article  Google Scholar 

  • Duan L, Dou L-L, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4(4):2405–2411

    Article  CAS  Google Scholar 

  • Fadeev AG, Meagher MM (2001) Opportunities for ionic liquids in recovery of biofuels. Chem Commun 3, 295–296.

    Article  Google Scholar 

  • Farias D, Atala D, Filho F (2017) Improving bioethanol production by Scheffersomyces stipitis using retentostat extractive fermentation at high xylose concentration. Biochem Eng J 121, 171–180

    Article  CAS  Google Scholar 

  • Farias F, Passos H, Coutinho J, Mafra M (2018) The pH effect on the formation of deep-eutectic-solvent-based aqueous two-phase systems. Ind Eng Chem Res 57

  • Ferrari FA, Nogueira GP, Franco TT, Dias MOS, Cavaliero CKN, Witkamp GJ, van der Wielen LAM, Forte MBS (2021) The role of ionic liquid pretreatment and recycling design in the sustainability of a biorefinery: a sugarcane to ethanol example. Green Chem 23(22):9126–9139

    Article  CAS  Google Scholar 

  • Filho C, R.F.d., dos Santos, J.G., Palheta, R.A., Santos-Ebinuma, V.C., Viana Marques, D.d.A., Teixeira, M.F.S. (2021) Comparison of conventional and extractive fermentation using aqueous two-phase system to extract fibrinolytic proteases produced by Bacillus stearothermophilus DPUA 1729. Prep Biochem Biotechnol 51(2):191–200

    Article  Google Scholar 

  • Florindo C, Branco LC, Marrucho IM (2019) Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents. Chemsuschem 12(8):1549–1559

    Article  CAS  Google Scholar 

  • Gausmann M, Gössi A, Bertram F, Riedl W, Schuur B, Jupke A (2022) Electrochemical membrane-assisted pH-swing extraction and back-extraction of lactic acid. Sep Purif Technol 289:120702

    Article  CAS  Google Scholar 

  • Ghosh S, Swaminathan TJC, Quarterly BE (2003) Optimization of process variables for the extractive fermentation of 2, 3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. 17(4), 319–326.

  • Glyk A, Scheper T, Beutel S (2015) PEG–salt aqueous two-phase systems: an attractive and versatile liquid–liquid extraction technology for the downstream processing of proteins and enzymes. Appl Microbiol Biotechnol 99(16):6599–6616

    Article  CAS  Google Scholar 

  • González-Peñas H, Lu-Chau TA, Eibes G, Lema JM (2020) Energy requirements and economics of acetone–butanol–ethanol (ABE) extractive fermentation: a solvent-based comparative assessment. Bioprocess Biosyst Eng 43(12):2269–2281

    Article  Google Scholar 

  • Gu Z, Rickert DA, Glatz BA, Glatz CEJLL (1999) Feasibility of propionic acid production by extractive fermentation. 79(1), 137–148.

  • Guiochon G, Beaver LA (2011) Separation science is the key to successful biopharmaceuticals. J Chromatogr A 1218(49):8836–8858

    Article  CAS  Google Scholar 

  • Gutiérrez LF, Sánchez ÓJ, Cardona CA (2013) Analysis and design of extractive fermentation processes using a novel short-cut method. Ind Eng Chem Res 52(36):12915–12926

    Article  Google Scholar 

  • Hassan E-SRE, Mutelet F (2022) Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production. Biores Technol 345:126460

    Article  CAS  Google Scholar 

  • Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proc Online 18(1):18

    Article  Google Scholar 

  • Jamaluddin N, Ariff AB, Wong FWF (2019) Purification of a bacteriocin-like inhibitory substance derived from pediococcus acidilactici Kp10 by an aqueous Micellar two-phase system. Biotechnol Prog 35(1):e2719

    Article  Google Scholar 

  • Jawan R, Abbasiliasi S, Tan JS, Halim M, Mustafa S, Lee BH, Kwa JS, Ariff AB (2021) Extractive fermentation for recovery of bacteriocin-like inhibitory substances derived from lactococcus lactis Gh1 using PEG2000/Dextran T500 aqueous two-phase system. Fermentation, 7(4).

  • Jeon YJ, Lee YY (1989) In situ product separation in butanol fermentation by membrane-assisted extraction. Enzyme Microb Technol 11(9):575–582

    Article  CAS  Google Scholar 

  • Jin Z, Yang ST (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol Prog 14(3):457–465

    Article  CAS  Google Scholar 

  • Johansson G, Reczey K (1998) Concentration and purification of β-glucosidase from Aspergillus niger by using aqueous two-phase partitioning. J Chromatogr B Biomed Sci Appl 711(1):161–172

    Article  CAS  Google Scholar 

  • Jones TD, Havard JM, Daugulis AJ (1993) Ethanol production from lactose by extractive fermentation. Biotech Lett 15(8):871–876

    Article  CAS  Google Scholar 

  • Jozala AF, Lopes AM, Mazzola PG, Magalhães PO, Vessoni Penna TC, Pessoa A (2008) Liquid–liquid extraction of commercial and biosynthesized nisin by aqueous two-phase micellar systems. Enzyme Microb Technol 42(2):107–112

    Article  CAS  Google Scholar 

  • Kadhum HJ, Mahapatra DM, Murthy GS (2019) A comparative account of glucose yields and bioethanol production from separate and simultaneous saccharification and fermentation processes at high solids loading with variable PEG concentration. Biores Technol 283:67–75

    Article  CAS  Google Scholar 

  • Kaijia X, Wang Y, Huang Y, Li N, Wen Q (2015) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Analytica Chimica Acta 864

  • Kee PE, Yim HS, Kondo A, Lan JC-W, Ng HS (2022) Extractive fermentation of Kytococcus sedentarius TWHKC01 using the aqueous biphasic system for direct recovery of keratinase: ABS extractive fermentation for keratinase production and recovery. J Taiwan Instit Chem Eng 104232

  • Kiran Kumar A, Sharma S, Dixit G, Shah E, Patel A, Boczkaj G (2020) Techno‐economic evaluation of a natural deep eutectic solvent‐based biorefinery: exploring different design scenarios. Biofuels, Bioproducts Biorefining 14.

  • Kongkaew A, Tönjes J, Siemer M, Boontawan P, Rarey J, Boontawan A (2018) Extractive fermentation of ethanol from sweet sorghum using vacuum fractionation technique: optimization and techno-economic assessment. Int J Chem React Eng In Press.

  • Kula M-R, Kroner KH, Hustedt H (1982) Purification of enzymes by liquid-liquid extraction. Reaction Engineering, 1982//, Berlin, Heidelberg. Springer Berlin Heidelberg. pp 73–118

  • Lee S-M, Chang W-J, Choi A-R, Koo Y-M (2005) Influence of ionic liquids on the growth ofEscherichia coli. Korean J Chem Eng 22(5):687–690

    Article  CAS  Google Scholar 

  • Lemos DA, Sonego JLS, Cruz AJG, Badino AC (2020) Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor. Bioprocess Biosyst Eng, 43(12), 2295–2303

    Article  CAS  Google Scholar 

  • Li N, Wang Y, Xu K, Wen Q, Ding X, Zhang H, Yang Q (2016) High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA. RSC Adv 6(87):84406–84414

    Article  CAS  Google Scholar 

  • Li C, Ouyang F, Bai JJBL (2004) Extractive cultivation of Lactococcus lactis using a polyethylene glycol/MgSO4 · 7H2O aqueous two-phase system to produce nisin. 22, 843–847z

  • Li XP, Wang Y, Ma YJ, Wang JW, Zheng LP (2020) Nitric oxide and hydrogen peroxide signaling in extractive shiraia fermentation by Triton X-100 for Hypocrellin A Production. Int J Mol Sci21(3).

  • Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, Tang TK, Juan JC, Ling TC (2016) Production of γ-cyclodextrin by Bacillus cereus cyclodextrin glycosyltransferase using extractive bioconversion in polymer-salt aqueous two-phase system. J Biosci Bioeng 121(6):692–696

    Article  CAS  Google Scholar 

  • Linke D, Berger RG (2011) Foaming of proteins: new prospects for enzyme purification processes. J Biotechnol 152(4):125–131

    Article  CAS  Google Scholar 

  • Liu C-L, Kamei DT, King JA, Wang DIC, Blankschtein D (1998) Separation of proteins and viruses using two-phase aqueous micellar systems. J Chromatogr B Biomed Sci Appl 711(1):127–138

    Article  CAS  Google Scholar 

  • Liu J-G, Xing J-M, Chang T-S, Liu H-Z (2005) Purification of nattokinase by reverse micelles extraction from fermentation broth: effect of temperature and phase volume ratio. Bioprocess Biosyst Eng 28(4):267

    Article  Google Scholar 

  • Liu Y, Sun M-H, Shao S-K, Deng G (2017) An affinity-based aqueous two-phase mixed micellar system and its purification of Yeast 3′,5′-bisphosphate nucleotidase. J Chromatogr B 1060:215–220

    Article  CAS  Google Scholar 

  • Lu J, Liu H, Song F, Xia F, Huang X, Zhang Z, Cheng Y, Wang H (2020) Combining hydrothermal-alkaline/oxygen pretreatment of reed with PEG 6,000-assisted enzyme hydrolysis promote bioethanol fermentation and reduce enzyme loading. Ind Crops Prod 153:112615

    Article  CAS  Google Scholar 

  • Makoś-Chełstowska P, Słupek E, Gebicki J (2020) Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents–Experimental and theoretical studies. J Mol Liq 308:113101

    Article  Google Scholar 

  • Matsumoto M (2018) In situ Extractive Fermentation of Lactic Acid by Rhizopus oryzae in an Air-lift Bioreactor. Chem Biochem Eng Q 32:275–280

    Article  CAS  Google Scholar 

  • Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004a) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to lactobacillus rhamnosus. Sep Purif Technol 40:97–101

    Article  CAS  Google Scholar 

  • Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004b) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol 40(1):97–101

    Article  CAS  Google Scholar 

  • Matsumoto M, Mochiduki K, Kondo K (2004c) Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. J Biosci Bioeng 98(5):344–347

    Article  CAS  Google Scholar 

  • Mazzola P, Lopes A, Hasmann F, Jozala A, Penna T, Magalhães P, Rangel-Yagui C, Pessoa A (2008) Liquid-liquid extraction of biomolecules: An overview and update of the main techniques. J Chem Technol Biotechnol 83:143–157

    Article  CAS  Google Scholar 

  • McQueen L, Lai D (2019) Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. 7

  • Mehrkesh A, Karunanithi AT (2016) Life-cycle perspectives on aquatic ecotoxicity of common ionic liquids 50(13):6814–6821

    Article  CAS  Google Scholar 

  • Mihaľ M, Červeňanský I, Markoš J (2019) Investigation of membrane bioreactor for in situ product removal based on silicone rubber membrane module. Chem Papers, 73

  • Minier M, Goma G (1982) Ethanol production by extractive fermentation. Biotechnol Bioeng 24(7):1565–1579

    Article  CAS  Google Scholar 

  • Motghare KA, Wasewar KL, Shende DZ (2019) Separation of butanol using Tetradecyl(trihexyl)phosphonium Bis(2,4,4-trimethylpentyl)phosphinate, oleyl alcohol, and castor oil. J Chem Eng Data 64(12):5079–5088

    Article  CAS  Google Scholar 

  • Motghare K, Shende D, Wasewar K (2021) Butanol recovery using Ionic liquids as green solvents. J Chem Technol Biotechnol 97(4):873–884

    Article  Google Scholar 

  • Muniasamy R, Rathnasamy S (2023) Kinetics and thermodynamic insights on extractive fermentation of fibrinolytic protease by Burkholderia cenocepacia strain OK1899609 1 using glycol-based eutectic solvents. Sustain Chem Pharmacy 33:101076

    Article  CAS  Google Scholar 

  • Muniasamy R, Balamurugan BS, Rajamahendran D, Rathnasamy S (2022) Switchable deep eutectic solvent driven micellar extractive fermentation of ultrapure fibrin digesting enzyme from Bacillus subtilis. Sci Rep 12(1):903

    Article  CAS  Google Scholar 

  • Nelson RS, Peterson DJ, Karp EM, Beckham GT, Salvachúa D (2017) Mixed carboxylic acid production by megasphaera elsdenii from glucose and lignocellulosic hydrolysate. Fermentation 3(1):10

    Article  Google Scholar 

  • Neves CMSS, Granjo JFO, Freire MG, Robertson A, Oliveira NMC, Coutinho JAP (2011) Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids. Green Chem 13(6):1517–1526

    Article  CAS  Google Scholar 

  • O’Brien DJ, Roth LH, McAloon AJ (2000) Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis. J Membr Sci 166(1):105–111

    Article  Google Scholar 

  • Ooi CW, Hii SL, Kamal SMM, Ariff A, Ling TC (2011) Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. Process Biochem 46(1):68–73

    Article  CAS  Google Scholar 

  • Othman M, Ariff AB, Rios-Solis L, Halim M (2017) Extractive fermentation of lactic acid in lactic acid bacteria cultivation: a review. Front Microbiol 8:85. https://doi.org/10.3389/fmicb.2017.02285

    Article  Google Scholar 

  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents – solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071

    Article  CAS  Google Scholar 

  • Palacios-Bereche R, Ensinas A, Modesto M, Nebra SA (2014) New alternatives for the fermentation process in the ethanol production from sugarcane: extractive and low temperature fermentation. Energy 70:595–604

    Article  CAS  Google Scholar 

  • Pan T, Wang Z, Xu J-H, Wu Z, Qi H (2010) Extractive fermentation in cloud point system for lipase production by Serratia marcescens ECU1010. Appl Microbiol Biotechnol 85(6):1789–1796

    Article  CAS  Google Scholar 

  • Pandey SK, Banik RM (2011) Extractive fermentation for enhanced production of alkaline phosphatase from bacillus licheniformis MTCC 1483 using aqueous two-phase systems. Biores Technol 102(5):4226–4231

    Article  CAS  Google Scholar 

  • Paquet V, Myint M, Roque C, Soucaille P (1994) Partitioning of pristinamycins in aqueous two-phase systems: a first step toward the development of antibiotic production by extractive fermentation. Biotechnol Bioeng 44(4):445–451

    Article  CAS  Google Scholar 

  • Passos H, Ferreira AR, Cláudio AFM, Coutinho JAP, Freire MG (2012) Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt. Biochem Eng J 67:68–76

    Article  CAS  Google Scholar 

  • Patel AK, Singhania RR, Pandey A (2017) Chapter 2 - production, purification, and application of microbial enzymes. In: Brahmachari G (ed) Biotechnology of microbial enzymes. Academic, Press, pp 13–41

    Chapter  Google Scholar 

  • Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2015) Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation, or pretreatment. J Agric Food Chem 63(37):8093–8102

    Article  CAS  Google Scholar 

  • Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2016) Furfural production using ionic liquids: a review. Biores Technol 202:181–191

    Article  CAS  Google Scholar 

  • Pérez Bibbins B, González-Peñas H, Toth E, Coupard V, Lopes-Ferreira N (2017) Hybrid In Situ product recovery technique applied to (A)IBE fermentation. Process Biochem 65:21–27

    Article  Google Scholar 

  • Phakoukaki Y-V, O’Shaughnessy P, Angeli P (2022) Intensified liquid-liquid extraction of biomolecules using ionic liquids in small channels. Sep Purif Technol 282:120063

    Article  CAS  Google Scholar 

  • Planas J, Ra˚dström, P., Tjerneld, F., Hahn-Hägerdal, B. (1996) Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system. Appl Microbiol Biotechnol 45(6):737–743

    Article  CAS  Google Scholar 

  • Potapovich MV, Eremin AN, Metelitsa DI (2003) Kinetics of catalase inactivation induced by ultrasonic cavitation. Prikl Biokhim Mikrobiol 39(2):160–166

    CAS  Google Scholar 

  • Rabieenezhad A, Roosta A (2018) Experimental study and thermodynamic modelling of penicillin-G extraction using PEG 6000 and K2HPO4 aqueous two-phase system. J Chem Thermodyn 120:54–59

    Article  CAS  Google Scholar 

  • Rajan K, Elder T, Abdoulmoumine N, Carrier DJ, Labbé N (2020) Understanding the in situ state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals. Green Chem 22(20):6748–6766

    Article  CAS  Google Scholar 

  • Rathnasamy S, Kumaresan R (2013) Design and development of single stage purification of papain using Ionic Liquid based aqueous two phase extraction system and its Partition coefficient studies. Int J Eng Technol (IJET) 5:1934–1941

    Google Scholar 

  • Rathnasamy SK, Durai A, Vigneshkumar AA, Purushothaman C, Rajendran DS, Chandramouliswaran K (2020) One-pot simultaneous production and sustainable purification of fibrinolytic protease from Bacillus cereus using natural deep eutectic solvents. Sci Rep 10(1):13356

    Article  CAS  Google Scholar 

  • Rathnasamy S, Rajendran DS, Balaraman H, Viswanathan G (2019) Functional deep eutectic solvent-based chaotic extraction of phycobiliprotein using microwave-assisted liquid-liquid micro-extraction from Spirulina (Arthrospira platensis) and its biological activity determination

  • Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng 3(10):2469–2477

    Article  CAS  Google Scholar 

  • Rodrigues KCS, Sonego JLS, Cruz AJG, Bernardo A, Badino AC (2018) Modeling and simulation of continuous extractive fermentation with CO2 stripping for bioethanol production. Chem Eng Res Des 132:77–88

    Article  CAS  Google Scholar 

  • Rosa PAJ, Azevedo AM, Sommerfeld S, Bäcker W, Aires-Barros MR (2011) Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability. Biotechnol Adv 29(6):559–567

    Article  CAS  Google Scholar 

  • Sales AE, de Souza FASD, Teixeira JA, Porto TS, Porto ALF (2013) Integrated process production and extraction of the fibrinolytic protease from bacillus sp. UFPEDA 485. Appl Biochem Biotechnol 170(7):1676–1688

    Article  CAS  Google Scholar 

  • Sanchez-Segado S, Salar-García MJ, Ortiz-Martínez V, Ríos A, Hernández-Fernández F, Lozano-Blanco L (2019) Evaluation of ionic liquids as in situ extraction agents during the alcoholic fermentation of carob pod extracts. Fermentation 5:90

    Article  CAS  Google Scholar 

  • Sekhon JK, Rosentrater KA, Jung S, Wang T (2018) Effect of co-products of enzyme-assisted aqueous extraction of soybeans, enzymes, and surfactant on oil recovery from integrated corn-soy fermentation. Ind Crops Prod 121:441–451

    Article  CAS  Google Scholar 

  • Show PL, Tan CP, Shamsul Anuar M, Ariff A, Yusof YA, Chen SK, Ling TC (2012) Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Biores Technol 116:226–233

    Article  CAS  Google Scholar 

  • da Silva FLH, Rodrigues MI, Maugeri FJJOCT, Biotechnology: international research in process, E., technology, C. 1999. Dynamic modelling, simulation and optimization of an extractive continuous alcoholic fermentation process. 74(2), 176–182.

  • Silva OSd, Alves RO, Porto TS (2018) PEG-sodium citrate aqueous two-phase systems to in situ recovery of protease from Aspergillus tamarii URM4634 by extractive fermentation. Biocatal Agric Biotechnol 16:209–216

    Article  Google Scholar 

  • Singh P, Banik RM (2012) Partitioning studies of l-glutaminase production by Bacillus cereus MTCC 1305 in different PEG–salt/dextran. Biores Technol 114:730–734

    Article  CAS  Google Scholar 

  • Singh K, Gedam PS, Raut AN, Dhamole PB, Dhakephalkar PK, Ranade DR (2017) Enhanced n-butanol production by Clostridium beijerinckii MCMB 581 in presence of selected surfactant. 3 Biotech 7(3):161

    Article  Google Scholar 

  • Sinha J, Dey PK, Panda T (2000) Extractive fermentation for improved production of endoglucanase by an intergeneric fusant of Trichoderma Reesei/Saccharomyces cerevisiae using aqueous two-phase system. Biochem Eng J 6(3):163–175

    Article  CAS  Google Scholar 

  • Słupek E, Makoś P, Gębicki J (2020) Theoretical and economic evaluation of low-cost deep eutectic solvents for effective biogas upgrading to bio-methane. Energies 13:3379

    Article  Google Scholar 

  • Song W, He Y, Huang R, Li J, Yu Y, Xia P (2023) Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production. Appl Energy 335:120758

    Article  CAS  Google Scholar 

  • Sreekumar S, Baer ZC, Pazhamalai A, Gunbas G, Grippo A, Blanch HW, Clark DS, Toste FD (2015) Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat Protoc 10(3):528–537

    Article  CAS  Google Scholar 

  • Sulaiman Phd ITAZ, Ajit TDA, Yunus R, Chisti Y (2011) Ultrasound-assisted fermentation enhances bioethanol productivity. Biochem Eng J 54:141–150

    Article  Google Scholar 

  • Survase SA, Zebroski R, Bayuadri C, Wang Z, Adamos G, Nagy G, Pylkkanen V (2019) Membrane assisted continuous production of solvents with integrated solvent removal using liquid-liquid extraction. Biores Technol 280:378–386

    Article  CAS  Google Scholar 

  • Tanaka S, Tashiro Y, Kobayashi G, Ikegami T, Negishi H, Sakaki K (2012) Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1–4 with 1-dodecanol as the extractant. Biores Technol 116:448–452

    Article  CAS  Google Scholar 

  • Teke G, Pott R (2020) Design and evaluation of a continuous semi-partition bioreactor (SPB) for in-situ liquid-liquid extractive fermentation. Biotechnol Bioeng 118:58–71

    Article  Google Scholar 

  • Tian X, Tang R, Chen G, Zhang F, Wu Z (2018) Separation of Monascus pigments from extractive fermentation broth with a high concentration of triton X-100. Sep Sci Technol 53(16):2601–2611

    Article  CAS  Google Scholar 

  • Tiecco M, Cappellini F, Nicoletti F, Del Giacco T, Germani R, Di Profio P (2019) Role of the hydrogen bond donor component for a proper development of novel hydrophobic deep eutectic solvents. J Mol Liq 281:423–430

    Article  CAS  Google Scholar 

  • Torres FAE, de Almeida Francisco AC, Pereira JFB, Santos-Ebinuma, V.d.C. (2018) Imidazolium-based ionic liquids as co-surfactants in aqueous micellar two-phase systems composed of nonionic surfactants and their aptitude for recovery of natural colorants from fermented broth. Sep Purif Technol 196:262–269

    Article  CAS  Google Scholar 

  • Torres-Acosta M, Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M (2018) Aqueous two-phase systems at large scale: challenges and opportunities. Biotechnol J 14:1800117

    Article  Google Scholar 

  • Umego E, He R, Huang G, Dai C, Ma H (2021) Ultrasound assisted fermentation: mechanisms, technologies and challenges. J Food Process Preserv 45:e15559

    Article  CAS  Google Scholar 

  • Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev 117(10):6984–7052

    Article  CAS  Google Scholar 

  • Viana D, Ebinuma V, Pessoa A, Rivas B, Porto A, Converti A (2016) Effect of aeration and agitation on extractive fermentation of clavulanic acid by using aqueous two-phase system. Biotechnol Progr 32:1444–1452

    Article  Google Scholar 

  • Viana Marques DA, Pessoa-Júnior A, Lima-Filho JL, Converti A, Perego P, Porto AL (2011) Extractive fermentation of clavulanic acid by Streptomyces DAUFPE 3060 using aqueous two-phase system. Biotechnol Prog, 27(1), 95–103.

    Article  CAS  Google Scholar 

  • Vicente FA, Santos JHPM, Pereira IMM, Gonçalves CVM, Dias ACRV, Coutinho JAP, Ventura SPM (2019) Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chem Eng 1(1):4

    Article  Google Scholar 

  • Vilaplana F, Ventura SPM, Sudarsanam P, Abdoulmoumine N, Carrier DJ (2021) Effective assessment practices for using sustainability metrics: biomass processing. ACS Sustain Chem Eng 9(44):14654–14656

    Article  CAS  Google Scholar 

  • Wang Z, Dai Z (2010) Extractive microbial fermentation in cloud point system. Enzyme Microb Technol 46(6):407–418

    Article  CAS  Google Scholar 

  • Widjaja T, Altway A, Permanasari A, Gunawan S (2014) Production of ethanol as a renewable energy by extractive fermentation. Appl Mech Mater 493:300–305

    Article  CAS  Google Scholar 

  • Willauer HD, Huddleston JG, Rogers RD (2002) Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species. Ind Eng Chem Res 41(7):1892–1904

    Article  CAS  Google Scholar 

  • Xiong X, Zhang X, Wu Z, Wang Z (2015) Coupled aminophilic reaction and directed metabolic channeling to red Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Process Biochem, 50(2), 180–187.

    Article  CAS  Google Scholar 

  • Xu F, Sun J, Wehrs M, Kim KH, Rau SS, Chan AM, Simmons BA, Mukhopadhyay A, Singh S (2018) Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol. ACS Sustain Chem Eng 6(7):8914–8919

    Article  CAS  Google Scholar 

  • Yamada R, Ando Y, Mitsui R, Mizobata A, Yoshihara S, Tokumoto H, Matsumoto T, Ogino H (2021) Improving carotenoid production in recombinant yeast, saccharomyces cerevisiae, using ultrasound-irradiated two-phase extractive fermentation. Eng Life Sci 22:4–12

    Article  Google Scholar 

  • Yang S-T, Huang H, Tay A, Qin W, De Guzman L, Nicolas ECS (2007) Chapter 16 - Extractive fermentation for the production of carboxylic acids. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. Elsevier, Amsterdam, pp 421–446

    Chapter  Google Scholar 

  • Yu H, Cui K, Li T, Zhang Z, Zhou Z, Ren Z (2019) Recovery of butanol from ABE fermentation broth with hydrophobic functionalized ionic liquids as extractants. ACS Sustain Chem Eng 7(10):9318–9329

    Article  CAS  Google Scholar 

  • Yue C, Fang D, Liu L, Yi T-F (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163(3):99–121

    Article  CAS  Google Scholar 

  • Zaib Q, Eckelman MJ, Yang Y, Kyung D (2022) Are deep eutectic solvents really green?: a life-cycle perspective. Green Chem 24(20):7924–7930

    Article  CAS  Google Scholar 

  • Zhang Q, Wu D, Lin Y, Wang X, Kong H, Tanaka S (2015) Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels 29(2):1019–1027

    Article  CAS  Google Scholar 

  • Zhang S, Huang X, Qu C, Suo Y, Liao Z, Wang J (2017) Extractive fermentation for enhanced isopropanol and n-butanol production with mixtures of water insoluble aliphatic acids and oleyl alcohol. Biochem Eng J 117:112–120

    Article  CAS  Google Scholar 

  • Zhang Z, Liu Y, Dai Y, Zhang H, Chen Z, Shen Y, Zhu Z, Wang Y (2020) Life cycle environmental implications of ionic-liquid-based carbon capture and storage processes and its alternative improvement cases. ACS Sustain Chem Eng 8(49):18106–18113

    Article  CAS  Google Scholar 

  • Zhao L, Lu F, Zhang X, Wang Z (2017) Isolation of ionizable red Monascus pigments after extractive fermentation in nonionic surfactant micelle aqueous solution. Process Biochem 61:156–162

    Article  CAS  Google Scholar 

  • Zhao J, Wilkins MR, Wang D (2022) A review on strategies to reduce ionic liquid pretreatment costs for biofuel production. Biores Technol 364:128045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the Department of Science and Technology, India for providing research grants through Women scientist-A (WOS-A/CS-57/2019 (G)) to accomplish the investigation. The authors also acknowledge Green Separation Engineering laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu – 613 401, India for providing the lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Rathnasamy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest towards any individual (or) educational and research institution of any kind. The authors further claim that these research findings described herein are their own proposals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniasamy, R., Venkatachalam, P., Rangarajan, V. et al. A comprehensive perspective on sustainable bioprocessing through extractive fermentation: challenges and prospects. Rev Environ Sci Biotechnol 22, 715–737 (2023). https://doi.org/10.1007/s11157-023-09666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-023-09666-z

Keywords

Navigation