Skip to main content
Log in

A Critical Review on Chlorella vulgaris Deconstruction by Green Sequential Extractions: The Potential of (Bio)Surfactant Modifiers

  • Review Article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Chlorella vulgaris is a potential sustainable source of lipids, carotenoids, carbohydrates, and proteins, as it shows high biomass productivity and easy cultivation. Therefore, the aim of this work was to critically discuss the cultivation and characterization of C. vulgaris, and also the aspects related to the application of green extraction technologies for the recovery of valuable compounds from the algae biomass. As a novelty, this review provided insights concerning scientific trends on sequential extraction methods—biorefinery concepts, and to the use of surfactants as solvent modifiers. It was found that green methods such as Supercritical Fluid Extraction (SFE) with \({\mathrm{CO}}_{2}\) can recover 50% of Chlorella vulgaris-based lipids. It is worth noting that no data are available combining SFE with surfactants applied for microalgae extraction, except for the study on dewaxing of grey cotton fabric using SFE-CO2 with a surfactant as modifiers. On the other hand, surfactants were applied as modifieds in other green technologies, such as in the study of hydrothermal lipid-extraction from C. vulgaris, with a positive significant effect of the surfactants (sodium dodecyl benzene sulfonate and methylbenzenethonium chloride) on lipid-extraction yield. Therefore, the use of surfactants and biosurfactants as modifiers on green extraction methods should be deeper investigated, since it is technically and economically feaseble to implement for different extraction methods and can lead to higher yields, mostly with low restrictions of application from health to environment.

Graphical Abstract

Graphical abstract showing outcomes when pulping with wood ash solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

[Omim][OAc]:

1-Octyl-3-methylimidazolium acetate

2-MeTHF:

2-Methyltetrahydrofuran

3_DAPS:

3-(Decyldimethylammonio)-propanesulfonate

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

ALA:

Alpha-linolenic acid

BBM:

Basal bold medium

BG11:

Blue-green medium

\({\mathrm{CO}}_{2}\) :

Carbon dioxide

C. vulgaris :

Chlorella vulgaris

CGF:

Chlorella growth factor

CPME:

Cyclopentyl methyl ether

CSHD:

Cationic surfactant-based harvesting and cell disruption

CTAB:

Cetrimonium bromide

DCM:

Dichloromethane:methanol

DCW:

Dry cell weight

DES:

Deep eutectic solvent

DHA:

Docosahexaenoic acid

DMSO:

Dimethyl sulfoxide

DPPH:

Antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl

DW:

Distilled water

EPA:

Eicosapentaeonic acid

EtOH:

Ethanol

FAME:

Fatty acid methyl esters

FRAP:

Ferric reducing antioxidant power

GC–MS:

Gas chromatography–mass spectrometry

GGE:

Gallons gasoline equivalent

\({\mathrm{H}}_{2}\mathrm{O}\) :

Water

His:

Histidine

HLB:

Hydrophilic lipophilic balance

HPLC:

High-performance liquid chromatography

IL:

Ionic liquids

kHz:

Kilohertz

LBF:

Liquid biphasic flotation

LC–MS:

Liquid chromatography–mass spectrometry

Leu:

Leucine

Lys:

Lysine

MAE:

Microwave-assisted extraction

MBC:

Methylbenzenethonium chloride

MELs:

Mannosylerythritol lipids

Met:

Methionine

MTAB:

Myristyltrimethylammonium bromide

MWTPP:

Microwave-assisted three phase partitioning

N_LS:

N-lauroyIsarcosine sodium

NL:

Neutral lipids

NS:

Non-ionic surfactant

NTP:

Nitrogen to protein

O2 :

Oxigen

OS:

Oligomeric surfactant

OVAT:

One-variable-at-a-time

Phe:

Phenylalanine

PLE:

Pressurized liquid extraction

POME:

Palm oil mill effluent

PUFAs:

Polyunsaturated fatty acids

PW:

Produced water

Rpm:

Revolutions per minute

SBDS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SFE:

Supercritical fluid extraction

SFE-CO2 :

Supercritical fluid extraction with carbon dioxide

STAC:

Stearyl trimethyl ammonium chloride

TEAC:

Trolox equivalent antioxidant capacity

Thr:

Threonine

TPC:

Total phenolic content

TPP:

Three phase partitioning

Tyr:

Tyrosine

UAE:

Ultrasound assisted extraction

US:

Ultrasound

Val:

Valine

W:

Watts

References

  1. Chen, J., Jayachandran, M.B.: A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem. 369, 130874 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. Khan, M.I., Shin, J.H., Kim, J.D.: The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. (2018). https://doi.org/10.1186/s12934-018-0879-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Borges Martins, L., Soares, J., Batita da Silveira, W., Superbi, R., Arêdes Martins, M.: Dilute sulfuric acid hydrolysis of Chlorella vulgaris biomass improves the multistage liquid-liquid extraction of lipids. Biomass Convers. Biorefinery 11, 2485–2497 (2021)

    Article  Google Scholar 

  4. Phong, W.N., Show, P.L., Le, C.F., Tao, Y., Chang, J.-S., Ling, T.C.: Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochem. Eng. J. 135, 83–90 (2018)

    Article  CAS  Google Scholar 

  5. Obeid, S., Beaufils, N., Camy, S., Takache, H., Ismail, A.: Supercritical carbon dioxide extraction and fractionation of lipids from. Algal Res. 34, 49–56 (2018)

    Article  Google Scholar 

  6. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M.: Comparision of several methods for effective lipid extraction from microalgar. Bioresource Technol. 10, 575–577 (2010)

    Google Scholar 

  7. Benvenutti, L., Zielinski, A.A.F., Ferreira, S.R.S.: Pressurized aqueous solutions of deep eutectic solvent (DES): a green emergent extraction of anthocyanins from a Brazilian berry processing by-product. Food Chem. X 13, 100236 (2022). https://doi.org/10.1016/j.fochx.2022.100236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Couto, D., Melo, T., Conde, T.A., Moreira, A.S., Ferreira, P., Costa, M., Domingues, P.: Food grade extraction of Chlorella vulgaris polar lipids: a comparative. Food Chemy. 375, 131685 (2022)

    Article  CAS  Google Scholar 

  9. Rokicka, M., Zieliński, M., Dudek, M., Dębowski, M.: Effects of ultrasonic and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. BioEnergy Res. 14, 752–760 (2021)

    Article  CAS  Google Scholar 

  10. Heo, Y.M., Lee, H., Lee, C., Kang, J., Ahn, J.-W., Lee, Y.M., Kim, J.-J.: An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal Res. 27, 286–294 (2017)

    Article  Google Scholar 

  11. Callejo-López, J., Ramírez, M., Cantero, D., Bolívar, J.: Versatile method to obtain protein- and/or amino acid-enriched extracts from fresh biomass of recalcitrant microalgae without mechanical pretreatment. Algal Res. 50, 102010 (2020)

    Article  Google Scholar 

  12. Hildebrand, G., Poojary, M.O., Lund, M., Garcia-Vaquero, M., Tiwari, B.: Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. J. Appl. Phycol. 32, 1709–1718 (2020)

    Article  CAS  Google Scholar 

  13. Safi, C., Camy, S., Frances, C., Montero, M., Calvo, E., Pontalier, P.-Y., Vaca-Garcia, C.: Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J. Appl. Phycol. 26, 1711–1718 (2014)

    Article  CAS  Google Scholar 

  14. Huang, W.-C., Kim, J.-D.: Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresource Technol. 149, 579–581 (2013)

    Article  CAS  Google Scholar 

  15. Wu, C., Xiao, Y., Lin, W., Zhu, J., Siegler, H., Zong, M., Rong, J.: Surfactants assist in lipid extraction from wet Nannochloropsis sp. Bioresource Technol. 243, 793–799 (2017)

    Article  CAS  Google Scholar 

  16. Alhattab, M., Kermanshahi-pour, A., Su-Ling Brooks, M.: Dispersed air flotation of Chlorella saccharophila and subsequent extraction of lipids—effect of supercritical CO2 extraction parameters and surfactant pretreatment. Biomass Bioenergy 127, 105297 (2019)

    Article  CAS  Google Scholar 

  17. Ghanayem, H., Okubayashi, S.: Water-free dewaxing of grey cotton fabric using supercritical carbon dioxide. J. Supercrit. Fluids 174, 105264 (2021)

    Article  CAS  Google Scholar 

  18. Dias Matosinhos, R., Cesca, K., Mattar Carciofi, B.A., De Oliveira, D., De Andrade, C.J.: Mannosylerythritol lipids as green pesticides and plant biostimulants. Soc. Chem. Ind. 1, 1 (2022)

    Google Scholar 

  19. Arun, J., Gopinath, K., SundarRajan, P., Felix, V., JoselynMonica, M., Malolan, R.: A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresource Technol. Rep. 11, 76–86 (2020). https://doi.org/10.1016/j.biteb.2020.100477

    Article  Google Scholar 

  20. Becker, E.: Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Bernal López, C. (2015). Extracción de Proteínas de Chlorella vulgaris y Nannochloropsis gaditana asistido por ultrasonido. Tesis de maestría.

  22. Shanmugan, S.M., Anto, S., Sudhakard, M., Kumar, S.S., Pugazhendhif, A.: Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresource Technol. 304, 123061 (2020)

    Article  Google Scholar 

  23. Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., Ibáñez, E.: Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgari. LWT Food Sci. Technol. 46, 245–253 (2012)

    Article  CAS  Google Scholar 

  24. Kulkarni, S., Nikolov, Z.: Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Res. 35, 185–193 (2018)

    Article  Google Scholar 

  25. Koyande, A., Chew, K., Rambabu, K., Tao, Y., Chu, D., Show, P.: Microalgae: a potential alternative to health supplementation for humans. Food Sci. Human Wellness 8, 16–24 (2019)

    Article  Google Scholar 

  26. Waterborg, J.: The protein protocols handbook. Humana Press, Totowa (2009)

    Google Scholar 

  27. Lowry, O.H., Rosebrough, N.J., Farr, L.A., Randall, R.J.: Protein measurement with the Folin phenol reagent. Department of pharmacology, Washington University, St. Louis (1951)

    Book  Google Scholar 

  28. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Reproduction research laboratories, Department of biochemistry, Athens (1976)

    Book  Google Scholar 

  29. Souza Araujo, G., Mascena Lopes, D.N., Santiago, C.D., Alves da Silva, J.W., Narciso Fernandes, F.A.: Influence of nutrients on biomass and oil yield from microalgae Chlorella vulgaris for biodiesel production. Ciência Agron. (2020). https://doi.org/10.5935/1806-6690.20200008

    Article  Google Scholar 

  30. Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L., Van Loon, L.: Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50, 1685–1695 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mazhangara, I., Chivandi, E., Fisher Mupangwa, J., Muchenje, V.: The potential of goat meat in the red meat industry. MDPI 11, 3671 (2019)

    CAS  Google Scholar 

  32. Lane, K., Derbyshire, E., Li, W., Brennan, C.: Bioavailability and potencial uses of vegetarian sources of omega-3 fatty acids: a review of the literature. Food Sci. Nutr. 54, 572–579 (2013)

    Google Scholar 

  33. Khorramdashti, M.S., Giri, M.S., Majidian, N.: Extraction lipids from Chlorella vulgaris by supercritical CO2 for biodiesel production. South Afr. J. Chem. Eng. 38, 121–131 (2021)

    Article  Google Scholar 

  34. Coronado Reyes, J.A., Salazar Torres, J.A., Juárez Campos, B., González Hernández, J.C.: Chlorella vulgaris, a microalgae important to be used in biotechnology: a review. Food Sci. Technol. 42, 1 (2020)

    Google Scholar 

  35. Anthony, J., Sivashankarasubbiah, K., Thonthula, S., Rangamaran, V., Gopal, D., Ramalingam, K.: An efficient method for the sequential production of lipid and carotenoids from the chlorella growth factor-extracted biomass of Chlorella vulgaris. J. Appl. Phycol. 30, 2325–2335 (2018)

    Article  CAS  Google Scholar 

  36. Li, C.-T., Trigani, K., Zuñiga, C., Eng, R., Chen, E., Zengler, K.: Examining the impact of carbon dioxide levels and modulation of resulting hydrogen peroxide in Chlorella vulgaris. Algal Res. 60, 102492 (2021)

    Article  Google Scholar 

  37. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C., Pugazhendhi, A.: Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci. Total Environ. 808, 151969 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Park, J.-Y., Lee, K., Choi, S.-A., Jeong, M.-J., Kim, B., Lee, J.-S., Oh, Y.-K.: Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renew. Energy 79, 3–8 (2015)

    Article  CAS  Google Scholar 

  39. Matias Silva, B., Dália da Silva, W.S.: Um panorama da implantação do etanol de 3ª geração como uma fonte de energia sustentável. Engevista 21, 176–192 (2019)

    Google Scholar 

  40. Laurens, L.M., Nagle, N., Davis, R., Sweeney, N., Van Wychen, S., Lowell, A., Pienkos, P.: Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem. 17, 1145 (2015)

    Article  CAS  Google Scholar 

  41. Srinivasan, R., Kumar, V., Kumar, D., Ramesh, N., Babu, S., Gothandam, K.: Effect of dissolved inorganic carbon on β-carotene and fatty acid production in Dunaliella sp. Appl. Biochem. Biotechnol. 175, 2895–2906 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Wensel, P.C., Bule, M., Gao, A., Pelaez-Samaniego, M.R., Yu, L., Hiscox, W., Chen, S.: Biorefinery processing of waste to supply cost-effective and sustainable inputs for two-stage microalgal cultivation. Appl. Sci. 12, 1485 (2022)

    Article  CAS  Google Scholar 

  43. Rude, K., Yothers, C., Barzee, T.J., Kutney, S., Zhang, R., Franz, A.: Growth potential of microalgae on ammonia-rich anaerobic digester effluent for wastewater remediation. Algal Res. 62, 102613 (2022)

    Article  Google Scholar 

  44. Alvez Silva, D., Guimarães Cardoso, L., de Jesus, S., Silva, J., Oliveira de Souza, C., França Lemos, P.V., Fernando de Almeida, P., Druzian, J.I.: Strategy for the cultivation of Chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ. Technol. Innov. 25, 102204 (2022)

    Article  Google Scholar 

  45. Phang, Y.K., Tey, L.-H., Aminuzzaman, M., Watanabe, A.: Investigation of the growth of Chlorella vulgaris and chlamydomonas reinhardtii cultivated in pre-treated palm oil mill effluent (POME) as the culture medium. Earth Environ. Sci. 945, 012077 (2021)

    Google Scholar 

  46. Spennati, E., Casazza, A.A., Converti, A.: Winery wastewater treatment by microalgae to produce low-cost biomass for energy production purposes. Energies 13, 2490 (2021)

    Article  Google Scholar 

  47. Najm, Y., Jeong, S., Leiknes, T.: Nutrient utilization and oxygen production by Chlorella vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system. Bioresource Technol. (2017). https://doi.org/10.1016/j.biortech.2017.02.057

    Article  Google Scholar 

  48. Palomino, A.: Extracción de aceite de microalgas. Universidad del Valle, Master (2013)

    Google Scholar 

  49. Cho, H.-S., Oh, Y.-K., Park, S.-C., Lee, J.-W., Park, J.-Y.: Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renew. Energy 54, 156–160 (2013)

    Article  CAS  Google Scholar 

  50. Koyande, A., Tanzil, V., Dharan, H.M., Subramaniam, M., Robert, R.N., Lau, P., Show, P.: Integration of osmotic shock assisted liquid biphasic system for protein extraction from microalgae Chlorella vulgaris. Biochem. Eng. J. 157, 107532 (2020)

    Article  Google Scholar 

  51. Cancela, Á., Álvarez, X., Sánchez, Á., Ortiz, L., Somoza, L.: Microalgae cultivation and harvesting for bioenergy production. Bioresource Technol. Rep. 8, 100333 (2019)

    Article  Google Scholar 

  52. Wan Mahmood, W.A., Theodoropoulos, C., Gonzalez-Miquel, M.: Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chem. 19, 5723–5733 (2017)

    Article  CAS  Google Scholar 

  53. Mendes, R.L., Nobre, B.P., Cardoso, M.T., Pereira, A.P., Palavra, A.F.: Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta 356, 328–334 (2003)

    Article  CAS  Google Scholar 

  54. Moghadam, A.J., Beni, A.A.: Comparison of biodiesel production from Dunaliella salina teodor and Chlorella vulgaris microalgae using supercritical fluid technique. South Afr. J. Chem. Eng. 41, 150–160 (2022)

    Article  Google Scholar 

  55. Hyun Cha, K., Woo Kang, S., Young Kim, C., Hun Um, B., Rim Na, Y., Pan, C.: Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 58, 4756–4761 (2010)

    Article  Google Scholar 

  56. Plaza, M., Marina, M.L.: Pressurized hot water extraction of bioactives. Trends Anal. Chem. 116, 235–247 (2019)

    Article  Google Scholar 

  57. Ying Lee, S., Khoiroh, I., Vo, N.: Techniques of lipid extraction from microalgae for biofuel production: a review. Environ. Chem. Lett. 19, 231–251 (2021)

    Article  Google Scholar 

  58. Park, J.-Y., Nam, B., Choi, S.-A., Oh, Y.-K., Lee, J.-S.: Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris. Bioresource Technol. 166, 620–624 (2014)

    Article  CAS  Google Scholar 

  59. Park, J.-Y., Kim, M.-C., Nam, B., Chang, H., Kim, D.-K.: Behavior of surfactants in oil extraction by surfactant-assisted acidic hydrothermal process from Chlorella vulgaris. Appl. Biochem. Biotechnol. 193, 319–334 (2021)

    Article  CAS  PubMed  Google Scholar 

  60. Chew, K.W., Chia, S.R., Ying Lee, S., Zhu, L., Show, P.L.: Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 367, 1–8 (2019)

    Article  CAS  Google Scholar 

  61. Krishnan, S., Abd Ghani, N., Aminuddin, N.F., Quraishi, K.S., Azman, N.S., Cravotto, G., Leveque, J.-M.: Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5–2.5% of imidazolium based ionic liquid as additive. Renew. Energy 149, 244–252 (2019)

    Article  Google Scholar 

  62. Parniakov, O., Apicella, E., Koubaa, M., Barba, F.J., Grimi, N., Lebovka, N., Pataro, G., Ferrari, G., Vorobiev, E.: Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresource Technol. 198, 262–267 (2015)

    Article  CAS  Google Scholar 

  63. Pez Jaeschke, D., Rech, R., Ferreira Marczak, L.D., Domeneghini Mercali, G.: Ultrasound as an alternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis. Bioresource Technol. 224, 753–757 (2017)

    Article  Google Scholar 

  64. Rudke, A.R., Da Silva, M., De Andrade, C.J., Vitali, L., Salvador Ferreira, R.S.: Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii. Algal Res. 67, 102866 (2022)

    Article  Google Scholar 

  65. Rudke, A.R., Andrade, De., Salvador Ferreira, R.S.: Kappaphycus alvarezii macroalgae: an unexplored and valuable biomass for green biorefinery conversion. Trends Food Sci. Technol. 103, 214–224 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Coordination for the Improvement of Higher Education Personnel (CAPES)—Institutional Program for Internationalization (PRINT), Project Numbers 88887.310560/2018-00 and 88887.310727/2018-00.

Author information

Authors and Affiliations

Authors

Contributions

GG: Conceptualization, Methodology, Software, Writing—Original Draft, Writing—Review & Editing; SRSF: Term, Supervision, Funding acquisition CJA: Term, Supervision, Funding acquisition.

Corresponding author

Correspondence to Cristiano José de Andrade.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, G.L.G., Ferreira, S.R.S. & de Andrade, C.J. A Critical Review on Chlorella vulgaris Deconstruction by Green Sequential Extractions: The Potential of (Bio)Surfactant Modifiers. Waste Biomass Valor 15, 525–542 (2024). https://doi.org/10.1007/s12649-023-02211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02211-7

Keywords

Navigation