Skip to main content

Advertisement

Log in

Prospects of Multiproduct Algal Biorefineries Involving Cascading Processing of the Biomass Employing a Zero-Waste Approach

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Increasing environmental problems demand mitigation solutions to fulfill sustainability development goals. Microalgae offer possibility of valorizing the CO2 and wastewater-derived nutrients to produce numerous industrial bioproducts. However, developing self-sustained systems for the complete valorization of algal biomass into valuable biobased products is challenging. Currently, sustainable algal processing faces several challenges including costly cultivation, difficult harvesting, and incomplete biomass valorization. This review assessed the prospects of emerging technologies focusing on the integrated approaches for sustainable algal biorefinery development ensuring the sustainability of environment-water-energy nexus.

Recent Findings

Evaluation of various upstream, midstream, and downstream processing technologies provided insights into the processing issues. In upstream processing, high-rate algal ponds and integrated carbon capture and transformation technologies offer waste valorization into eco-friendly algal production. A brief comparison of harvesting technologies mainly focusing on chemical and biological flocculation has shown that integrating physical and biological harvesting methods are more reliable and efficient. Overview of downstream processing has indicated that biomass processing in a cascading manner offers the complete biomass valorization in a zero-waste paradigm.

Summary

Assessment of cultivation-to-production technologies highlighted that “zero-waste” algal biorefinery has the potential to become reality by integrating the industry 4.0 and phenomics approaches with eco-friendly cultivation, harvesting, and processing technologies. Hybrid methods based on integrated cascading processing offer complete biomass valorization in a circular bioeconomy paradigm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    •   Of importance

      •• Of major importance

      1. Liu Y, Lyu Y, Tian J, Zhao J, Ye N, Zhang Y, et al. Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew Sust Energ Rev. 2021;139:110716.

      2. Fan L, Zhang H, Li J, Wang Y, Leng L, Li J, et al. Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: a review. Algal Res. 2020;47:101819.

      3. Nizami A-S, Rehan M, Waqas M, Naqvi M, Ouda OK, Shahzad K, et al. Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol. 2017;241:1101–17.

        Article  CAS  Google Scholar 

      4. Shahid A, Khan AZ, Malik S, Liu C-G, Mehmood MA, Syafiuddin A, et al. Advances in green technologies for the removal of effluent organic matter from the urban wastewater. Curr Pollut Rep. 2021.

      5. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation: a review. Sci Total Environ. 2020;704:135303.

      6. Joseph SM, Ketheesan B. Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. CSCEE. 2020:100046.

      7. Liu Y, Yildiz I. The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int J Energy Res. 2018;42(9):2997–3006.

        Article  CAS  Google Scholar 

      8. Hemalatha M, Sravan JS, Min B, Mohan SV. Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresour Technol. 2019;284:424–9.

        Article  CAS  Google Scholar 

      9. Mubashar M, Naveed M, Mustafa A, Ashraf S, Shehzad Baig K, Alamri S, et al. Experimental investigation of Chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater. Water. 2020;12(11):3034.

      10. Ferreira A, Ribeiro B, Ferreira AF, Tavares ML, Vladic J, Vidović S, et al. Scenedesmus obliquus microalga-based biorefinery–from brewery effluent to bioactive compounds, biofuels and biofertilizers–aiming at a circular bioeconomy. Biofuel Bioprod Biorefin. 2019;13(5):1169–86.

        Article  CAS  Google Scholar 

      11. Marchão L, Fernandes JR, Sampaio A, Peres JA, Tavares PB, Lucas MS. Microalgae and immobilized TiO2/UV-A LEDs as a sustainable alternative for winery wastewater treatment. Water Res. 2021;203:117464.

      12. Khatoon H, Haris H, Rahman NA, Zakaria MN, Begum H, Mian S. Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. J Ocean Univ China. 2018;17(3):641–6.

        Article  CAS  Google Scholar 

      13. Koutra E, Grammatikopoulos G, Kornaros M. Selection of microalgae intended for valorization of digestate from agro-waste mixtures. Waste Manage. 2018;73:123–9.

        Article  CAS  Google Scholar 

      14. Goswami G, Kumar R, Sinha A, Maiti SK, Dutta BC, Singh H, et al. A low-cost and scalable process for harvesting microalgae using commercial-grade flocculant. RSC Adv. 2019;9(67):39011–24.

        Article  CAS  Google Scholar 

      15. Choudhary P, Assemany PP, Naaz F, Bhattacharya A, Castro JdS, Couto EdAdC, et al. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci Total Environ. 2020;726:137961.

      16. Hemalatha M, Sarkar O, Mohan SV. Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chem Eng J. 2019;373:1042–53.

        Article  CAS  Google Scholar 

      17. Koyande AK, Show P-L, Guo R, Tang B, Ogino C, Chang J-S. Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered. 2019;10(1):574–92.

        Article  CAS  Google Scholar 

      18. Gerotto C, Norici A, Giordano M. Toward enhanced fixation of CO2 in aquatic biomass: focus on microalgae. Front Energy Res. 2020;8:213.

        Article  Google Scholar 

      19. Shahid A, Khan F, Ahmad N, Farooq M, Mehmood MA. Microalgal carbohydrates and proteins: Synthesis, extraction, applications, and challenges. In: Alam MA, Xu J-L, Wang Z, editors. Microalgae biotechnology for food, health and high value products. Singapore: Springer Singapore; 2020. p. 433–68.

        Chapter  Google Scholar 

      20. •• Shahid A, Malik S, Khan AZ, Liu C-G, Mehmood MA. Multiproduct algal biorefineries: Challenges and opportunities. In: Verma P, editor. Biorefineries: A step towards renewable and clean energy. Singapore: Springer Singapore 2020;513–37. This chapter discusses the challenges encountered in algal biorefinery development and possible solutions to address the discussed shortcomings.

        Chapter  Google Scholar 

      21. Sutherland DL, Park J, Heubeck S, Ralph PJ, Craggs RJ. Size matters — microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Res. 2020;45:101734.

      22. Leong YK, Huang C-Y, Chang J-S. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: the applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). J Environ Manage. 2021;296:113193.

      23. Arashiro LT, Montero N, Ferrer I, Acién FG, Gómez C, Garfí M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ. 2018;622–623:1118–30.

        Article  CAS  Google Scholar 

      24. Pahunang RR, Buonerba A, Senatore V, Oliva G, Ouda M, Zarra T, et al. Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Sci Total Environ. 2021;792:148479.

      25. Park JBK, Craggs RJ. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci Technol. 2011;63(10):2403–10.

        Article  CAS  Google Scholar 

      26. Molazadeh M, Danesh S, Ahmadzadeh H, Pourianfar HR. Influence of CO2 concentration and N: P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. J Taiwan Inst Chem Eng. 2019;96:114–20.

        Article  CAS  Google Scholar 

      27. Ma S, Yu Y, Cui H, Yadav RS, Li J, Feng Y. Unsterilized sewage treatment and carbohydrate accumulation in Tetradesmus obliquus PF3 with CO2 supplementation. Algal Res. 2020;45:101741.

      28. Roberts DA, de Nys R, Paul NA. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications. PLoS One. 2013;8(11):e81631.

      29. Mukherjee A, Moroney JV, Lau CS, MACKINDER LC. Green algal bestrophin bicarbonate transporters. Google Patents; 2021.

      30. Zhu C, Xi Y, Zhai X, Wang J, Kong F, Chi Z. Pilot outdoor cultivation of an extreme alkalihalophilic Trebouxiophyte in a floating photobioreactor using bicarbonate as carbon source. J Clean Prod. 2021;283:124648.

      31. Beardall J, Raven JA. Structural and biochemical features of carbon acquisition in algae. In: Larkum AWD, Grossman AR, Raven JA, editors. Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Cham: Springer International Publishing; 2020. p. 141–60.

        Chapter  Google Scholar 

      32. •• Zhang R-L, Wang J-H, Cheng L-Y, Tang Y-J, Chi Z-Y. Selection of microalgae strains for bicarbonate-based integrated carbon capture and algal production system to produce lipid. Int J Green Energy. 2019;16(11):825–33. This paper provides valuable information regarding strain selection parameters especially for bicarbonate-based integrated systems.

        Article  CAS  Google Scholar 

      33. Qilu C, Ligen X, Fangmin C, Gang P, Qifa Z. Bicarbonate-rich wastewater as a carbon fertilizer for culture of Dictyosphaerium sp. of a giant pyrenoid. J Clean Prod. 2018;202:439-43.

      34. Jones J, Barton C, Clayton M, Yablonsky A, Legere D. SkyMine carbon mineralization pilot project. Skyonic Corporation; 2010.

      35. Kim G-Y, Roh K, Han J-I. The use of bicarbonate for microalgae cultivation and its carbon footprint analysis. Green Chem. 2019;21(18):5053–62.

        Article  CAS  Google Scholar 

      36. Kothari R, Ahmad S, Pathak VV, Pandey A, Kumar A, Shankarayan R, et al. Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Convers Biorefin. 2021;11(4):1419–42.

        Article  CAS  Google Scholar 

      37. •• Roy UK, Radu T, Wagner JL. Carbon-negative biomethane fuel production: Integrating anaerobic digestion with algae-assisted biogas purification and hydrothermal carbonisation of digestate. Biomass Bioenergy. 2021;148:106029. This paper discusses a novel integrated approach for algal cultivation combined with biomethane production.

      38. •• Zhang R, Wang J, Zhai X, Che J, Xiu Z, Chi Z. Carbonate assisted lipid extraction and biodiesel production from wet microalgal biomass and recycling waste carbonate for CO2 supply in microalgae cultivation. Sci Total Environ. 2021;779:146445. This paper follows the “zero-waste” technique for wet algal biomass processing to produce biodiesel where the spent solvent was used as a CO2 absorbent for algal production.

      39. Costa JAV, de Freitas BCB, Lisboa CR, Santos TD, de Fraga Brusch LR, de Morais MG. Microalgal biorefinery from CO2 and the effects under the Blue Economy. Renew Sust Energ Rev. 2019;99:58–65.

        Article  Google Scholar 

      40. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol. 2020;301:122804.

      41. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702.

        Article  CAS  Google Scholar 

      42. Liu X-Y, Hong Y. Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Pollut Rep. 2021;7(2):227–45.

      43. Najjar YS, Abu-Shamleh A. Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Res. 2020;51:102046.

      44. Ghernaout D. Electrocoagulation process for microalgal biotechnology—a review. Appl eng. 2019;3(2):85–94.

        Google Scholar 

      45. Zhao Z, Li Y, Muylaert K, Vankelecom IF. Synergy between membrane filtration and flocculation for harvesting microalgae. Sep Purif Technol. 2020;240:116603.

      46. Alkarawi MA, Caldwell GS, Lee JG. Continuous harvesting of microalgae biomass using foam flotation. Algal Res. 2018;36:125–38.

        Article  Google Scholar 

      47. Shaikh SM, Hassan MK, Nasser MS, Sayadi S, Ayesh AI, Vasagar V. A comprehensive review on harvesting of microalgae using polyacrylamide-based flocculants: potentials and challenges. Sep Purif Technol. 2021:119508.

      48. •• Muhammad G, Alam MA, Mofijur M, Jahirul M, Lv Y, Xiong W, et al. Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sust Energ Rev. 2021;135:110209. This review is useful to have an understanding of algal flocculation methods, their advancements, and provide techno-economic insight into the process.

      49. Pugazhendhi A, Shobana S, Bakonyi P, Nemestóthy N, Xia A, Kumar G. A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Rep. 2019;21:e00302.

      50. Huang Y, Wei C, Liao Q, Xia A, Zhu X, Zhu X. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH. Bioresour Technol. 2019;276:133–9.

        Article  CAS  Google Scholar 

      51. Okoro V, Azimov U, Munoz J, Hernandez HH, Phan AN. Microalgae cultivation and harvesting: Growth performance and use of flocculants-A review. Renew Sust Energ Rev. 2019;115:109364.

      52. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol. 2019;272:34–9.

        Article  CAS  Google Scholar 

      53. Ray A, Banerjee S, Das D. Microalgal bio-flocculation: present scenario and prospects for commercialization. Environ Sci Pollut Res. 2021:1–19.

      54. • Li T, Hu J, Zhu L. Self-flocculation as an efficient method to harvest microalgae: a mini-review. Water. 2021;13(18):2585. This review is useful to understand the self-flocculation mechanism and its application in algae.

        Article  CAS  Google Scholar 

      55. Chen J, Leng L, Ye C, Lu Q, Addy M, Wang J, et al. A comparative study between fungal pellet-and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresour Technol. 2018;259:181–90.

        Article  CAS  Google Scholar 

      56. Nazari MT, Freitag JF, Cavanhi VAF, Colla LM. Microalgae harvesting by fungal-assisted bioflocculation. Rev Environ Sci Biotechnol. 2020;19(2):369–88.

        Article  Google Scholar 

      57. Khanra S, Mondal M, Halder G, Tiwari O, Gayen K, Bhowmick TK. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod Process. 2018;110:60–84.

        Article  CAS  Google Scholar 

      58. Sankaran R, Show PL, Nagarajan D, Chang J-S. Exploitation and biorefinery of microalgae. Waste Biorefinery: Elsevier; 2018. p. 571–601.

        Google Scholar 

      59. Ruiz J, Olivieri G, De Vree J, Bosma R, Willems P, Reith JH, et al. Towards industrial products from microalgae. Energy Environ Sci. 2016;9(10):3036–43.

        Article  Google Scholar 

      60. Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2019;37(3):242–52.

        Article  CAS  Google Scholar 

      61. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.

        Article  CAS  Google Scholar 

      62. Klok AJ, Verbaanderd JA, Lamers PP, Martens DE, Rinzema A, Wijffels RH. A model for customising biomass composition in continuous microalgae production. Bioresour Technol. 2013;146:89–100.

        Article  CAS  Google Scholar 

      63. Arifeen N, Wang R, Kookos IK, Webb C, Koutinas AA. Process design and optimization of novel wheat-based continuous bioethanol production system. Biotechnol Prog. 2007;23(6):1394–403.

        Article  CAS  Google Scholar 

      64. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod. 2006;23(3):288–96.

        Article  CAS  Google Scholar 

      65. Castilho LR, Polato CM, Baruque EA, Sant’Anna Jr GL, Freire DM. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem Eng J. 2000;4(3):239–47.

      66. Petrides D. Bioprocess design and economics. Biosep Sci and Eng. 2000;1–83.

      67. Vermuë M, Eppink M, Wijffels R, Van Den Berg C. Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 2018;36(2):216–27.

        Article  CAS  Google Scholar 

      68. Phusunti N, Cheirsilp B. Integrated protein extraction with bio-oil production for microalgal biorefinery. Algal Res. 2020;48:101918.

      69. Zheng Y, Xiao R, Roberts M. Polymer-enhanced enzymatic microalgal cell disruption for lipid and sugar recovery. Algal Res. 2016;14:100–8.

        Article  Google Scholar 

      70. Kim D-Y, Oh Y-K, Park J-Y, Kim B, Choi S-A, Han J-I. An integrated process for microalgae harvesting and cell disruption by the use of ferric ions. Bioresour Technol. 2015;191:469–74.

        Article  CAS  Google Scholar 

      71. Desai RK, Streefland M, Wijffels RH, Eppink MH. Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chem. 2014;16(5):2670–9.

        Article  CAS  Google Scholar 

      72. Passos H, Luís A, Coutinho JA, Freire MG. Thermoreversible (ionic-liquid-based) aqueous biphasic systems. Sci Rep. 2016;6(1):1–7.

        Article  CAS  Google Scholar 

      73. Orr VC, Rehmann L. Ionic liquids for the fractionation of microalgae biomass. Curr Opin Green Sustain Chem. 2016;2:22–7.

        Article  Google Scholar 

      74. ‘t Lam GP, van der Kolk JA, Chordia A, Vermuë MH, Olivieri G, Eppink MH, et al. Mild and selective protein release of cell wall deficient microalgae with pulsed electric field. ACS Sustain Chem Eng. 2017;5(7):6046–53.

      75. Günerken E, D’Hondt E, Eppink M, Garcia-Gonzalez L, Elst K, Wijffels RH. Cell disruption for microalgae biorefineries. Biotechnol Adv. 2015;33(2):243–60.

        Article  CAS  Google Scholar 

      76. Postma P, Pataro G, Capitoli M, Barbosa M, Wijffels RH, Eppink M, et al. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment. Bioresour Technol. 2016;203:80–8.

        Article  CAS  Google Scholar 

      77. Zinkoné TR, Gifuni I, Lavenant L, Pruvost J, Marchal L. Bead milling disruption kinetics of microalgae: process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. Bioresour Technol. 2018;267:458–65.

        Article  CAS  Google Scholar 

      78. Gilbert-López B, Mendiola JA, van den Broek LA, Houweling-Tan B, Sijtsma L, Cifuentes A, et al. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017;24:111–21.

        Article  Google Scholar 

      79. Sintra TE, Bagagem SS, Ahsaie FG, Fernandes A, Martins M, Macário IP, et al. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Sep Purif Technol. 2021;255:117538.

      80. Lupatini AL, de Oliveira Bispo L, Colla LM, Costa JAV, Canan C, Colla E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Int Food Res. 2017;99:1028–35.

      81. Desai RK, Monteillet H, Li X, Schuur B, Kleijn JM, Leermakers FA, et al. One-step mild biorefinery of functional biomolecules from microalgae extracts. React Chem Eng. 2018;3(2):182–7.

        Article  CAS  Google Scholar 

      82. Monlau F, Suarez-Alvarez S, Lallement A, Vaca-Medina G, Giacinti G, Munarriz M, et al. A cascade biorefinery for the valorization of microalgal biomass: biodiesel, biogas, fertilizers and high valuable compounds. Algal Res. 2021;59:102433.

      83. Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A. Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res. 2015;11:184–93.

        Article  Google Scholar 

      84. Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B. Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol Rep. 2018;20:e00280.

      85. Jaiswal D, Sahasrabuddhe D, Wangikar PP. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research. Curr Opin Biotechnol. 2022;73:314–22.

      86. Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, et al. Fourth generation biofuel from genetically modified algal biomass: challenges and future directions. Chemosphere. 2021;285:131535.

      87. Hendry JI, Dinh HV, Foster C, Gopalakrishnan S, Wang L, Maranas CD. Metabolic flux analysis reaching genome wide coverage: lessons learned and future perspectives. Curr Opin Chem Eng. 2020;30:17–25.

        Article  Google Scholar 

      88. •• Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci. 2020;11:279. This paper provides insight into emerging technologies like industry 4.0 and phenomics for improved sustainability of algal biorefinery.

        Article  Google Scholar 

      89. Wang K, Khoo KS, Leong HY, Nagarajan D, Chew KW, Ting HY, et al. How does the Internet of Things (IoT) help in microalgae biorefinery? Biotechnol Adv. 2021:107819.

      90. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang J-S. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv. 2021;47:107684.

      91. Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11(12):855–66.

        Article  CAS  Google Scholar 

      Download references

      Funding

      The authors received financial support from Higher Education Commission (NRPU-7300), Pakistan. The partial support in MJB laboratories through National Science Foundation grants (EFRI 90055171, NSF Lichens 90078340) is also received.

      Author information

      Authors and Affiliations

      Authors

      Corresponding authors

      Correspondence to Muhammad Aamer Mehmood or Raj Boopathy.

      Ethics declarations

      Conflict of Interest

      It is declared that authors have no competing interests.

      Human and Animal Rights and Informed Consent

      This article does not contain any studies with human or animal subjects performed by any of the authors.

      Additional information

      Publisher's Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      This article is part of the Topical Collection on Biology and Pollution

      Highlights

      • Anthropogenic activities require waste valorization to industrially viable products to mitigate environmental problems.

      • Designing self-sustainable and efficient algal biorefinery for waste valorization is challenging.

      • Standalone technologies for biomass processing are not robust.

      • Cascading biomass utilization offer promising potential to develop cost-effective biorefineries in a circular bioeconomy paradigm.

      Rights and permissions

      Reprints and permissions

      About this article

      Check for updates. Verify currency and authenticity via CrossMark

      Cite this article

      Malik, S., Shahid, A., Haider, M.N. et al. Prospects of Multiproduct Algal Biorefineries Involving Cascading Processing of the Biomass Employing a Zero-Waste Approach. Curr Pollution Rep 8, 147–158 (2022). https://doi.org/10.1007/s40726-022-00213-y

      Download citation

      • Accepted:

      • Published:

      • Issue Date:

      • DOI: https://doi.org/10.1007/s40726-022-00213-y

      Keywords

      Navigation