Skip to main content
Log in

Polarity-wise successive solvent extraction of Scenedesmus obliquus biomass and characterization of the crude extracts for broad-spectrum antibacterial activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present research aims to exploit the antioxidant and antibacterial activities of freshwater microalgae, Scenedesmus obliquus, by performing polarity-wise successive solvent extraction by hexane, chloroform, ethyl acetate, acetone, methanol, and water. The antibacterial and antioxidant activities of these crude extracts were evaluated, and a correlation was established between these two parameters. The methanol and water extracts showed the highest phenolic (18–23 mg GAE/g EW) and flavonoid (5–8 mg QE/g EW) contents, resulting in a maximum antioxidant activity (IC50 = 61–76 μg/mL for DPPH and 60–75 μg/mL for ABTS), but a lower antibacterial activity (MIC = 250–1000 μg/mL). In contrast, the hexane and chloroform extracts showed lower content of phenolics (0.3–0.8 mg GAE/g EW), resulting in a very low antioxidant activity (IC50 = 223–278 μg/mL for DPPH and 172–220 μg/mL for ABTS). The hexane and chloroform extracts contained both saturated and polyunsaturated fatty acids with carotenoids (4–6.2 mg/g DE) and lipids as their main constituents. Flavonoids like myricetin (0.3–0.56 μg/mg) and rutin (0.24–0.75 μg/mg) were identified and extracted from this algal strain for the first time. The hexane and chloroform extracts were effective on both Gram-positive and Gram-negative bacteria, exhibiting the highest antibacterial activity (MIC = 15.6–125 μg/mL). Overall, the polar solvent extracts of S. obliquus were found to contain a high amount of phenolics and flavonoids than most reported microalgae species, making it a potential strain for developing industrially relevant biopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  2. Mascarelli A (2009) A sleeping giant? Nat Clim Change 1:46–49. https://doi.org/10.1038/climate.2009.24

    Article  Google Scholar 

  3. Xia L, Rong J, Yang H, He Q, Zhang D, Hu C (2014) NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresource Technol 161:402–409. https://doi.org/10.1016/j.biortech.2014.03.063

    Article  Google Scholar 

  4. Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresource Technol 99:7941–7953. https://doi.org/10.1016/j.biortech.2008.02.061

    Article  Google Scholar 

  5. Ishaq AG, Matias-Peralta HM, Basri H (2016) Bioactive compounds from green microalga - Scenedesmus and its potential applications: a brief review. Pertanika J Trop Agric Sci 39:1–15

    Google Scholar 

  6. Bruce DL, Duff DCB, Antia NJ (1967) The identification of two antibacterial products of the marine planktonic alga Isochrysis galbana. Microbiol 48:293–298. https://doi.org/10.1099/00221287-48-2-293

    Article  Google Scholar 

  7. Herrero M, Mendiola JA, Plaza M and Ibañez E (2013) Screening for bioactive compounds from algae. In: Lee J (ed) Advanced biofuels and bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_35

  8. Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, Ninova MS, Kussovski VK (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540. https://doi.org/10.1111/ijfs.12122

    Article  Google Scholar 

  9. Galbraith H, Miller TB (1973) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658. https://doi.org/10.1111/j.1365-2672.1973.tb04150.x

    Article  Google Scholar 

  10. Smith VJ, Desbois AP, Dyrynda EA (2010) Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 8:1213–1262. https://doi.org/10.3390/md8041213

    Article  Google Scholar 

  11. Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755. https://doi.org/10.1046/j.1529-8817.2001.00130.x

    Article  Google Scholar 

  12. Petschow BW, Batema RP, Ford LL (1996) Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Ch 40:302. https://doi.org/10.1128/AAC.40.2.302

    Article  Google Scholar 

  13. Sun CQ, O’connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. Fems Immunol Med Microbiol 36:9–17. https://doi.org/10.1016/S0928-8244(03)00008-7

    Article  Google Scholar 

  14. Desbois AP, Lebl T, Yan L, Smith VJ (2008) Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbiol Biotechnol 81:755–764. https://doi.org/10.1007/s00253-008-1714-9

    Article  Google Scholar 

  15. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675. https://doi.org/10.1111/j.1541-4337.2010.00132.x

    Article  Google Scholar 

  16. Ördög V, Stirk WA, Lenobel R, Bancířová M, Strnad M, Van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314. https://doi.org/10.1023/B:JAPH.0000047789.34883.aa

    Article  Google Scholar 

  17. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514. https://doi.org/10.1042/bj0570508

    Article  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  Google Scholar 

  19. Sen S, De B, Devanna N, Chakraborty R (2013) Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant. Chin J Nat Medic 11:149–157. https://doi.org/10.1016/S1875-5364(13)60042-4

    Article  Google Scholar 

  20. Maadane A, Merghoub N, Ainane T, El Arroussi H, Benhima R, Amzazi S, Bakri Y, Wahby I (2015) Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J Biotechnol 215:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.400

    Article  Google Scholar 

  21. Rajeswari R, Jeyaprakash K (2019) Bioactive potential analysis of brown seaweed Sargassum wightii using UV-VIS and FT-IR. J Drug Deliv Ther 9:150–153. https://doi.org/10.22270/jddt.v9i1.2199

    Article  Google Scholar 

  22. Fadda A, Serra M, Molinu MG, Azara E, Barberis A, Sanna D (2014) Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. J Food Compos Anal 35:112–119. https://doi.org/10.1016/j.jfca.2014.06.006

    Article  Google Scholar 

  23. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476

    Google Scholar 

  24. Tangy A, Kumar VB, Pulidindi IN, Kinel-Tahan Y, Yehoshua Y, Gedanken A (2016) In-situ transesterification of Chlorella vulgaris using carbon-dot functionalized strontium oxide as a heterogeneous catalyst under microwave irradiation. Energy Fuels 30:10602–10610. https://doi.org/10.1021/acs.energyfuels.6b02519

    Article  Google Scholar 

  25. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324. https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  Google Scholar 

  26. Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173. https://doi.org/10.1016/j.algal.2013.01.004

    Article  Google Scholar 

  27. Becker W (2003) Microalgae in human and animal nutrition, In: Richmond A (ed) Handbook of microalgal culture, Wiley Online Library, 312–351. https://doi.org/10.1002/9780470995280.ch18

  28. Toyub M, Miah M, Habib M, Rahman M (2008) Growth performance and nutritional value of Scenedesmus obliquus cultured in different concentrations of sweetmeat factory waste media. Bangladesh J Anim Sci 37:86–93. https://doi.org/10.3329/bjas.v37i1.9874

    Article  Google Scholar 

  29. Hamouda RE, Abou-El-Souod GW (2018) Influence of various concentrations of phosphorus on the antibacterial, antioxidant and bioactive components of green microalgae scenedesmus obliquus. Int J Pharmacol 14:99–107. https://doi.org/10.3923/ijp.2018.99.107

    Article  Google Scholar 

  30. Sydney EB, Sturm W, De Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896. https://doi.org/10.1016/j.biortech.2010.02.088

    Article  Google Scholar 

  31. Onay M, Sonmez C, Oktem HA, Yucel M (2016) Evaluation of various extraction techniques for efficient lipid recovery from thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium species—comparison of lipid extraction methods from microalgae. Am J Anal Chem 7:141. https://doi.org/10.4236/ajac.2016.72012

    Article  Google Scholar 

  32. Aremu AO, Masondo NA, Stirk WA, Ördög V, Van Staden J (2014) Influence of culture age on the phytochemical content and pharmacological activities of five Scenedesmus strains. J Appl Phycol 26:407–415. https://doi.org/10.1007/s10811-013-0144-y

    Article  Google Scholar 

  33. Bulut O, Akın D, Sönmez Ç, Öktem A, Yücel M, Öktem HA (2019) Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents. J Appl Phycol 31:1675–1683. https://doi.org/10.1007/s10811-018-1726-5

    Article  Google Scholar 

  34. Banskota AH, Sperker S, Stefanova R, Mcginn PJ, O’leary SJB, (2019) Antioxidant properties and lipid composition of selected microalgae. J Appl Phycol 31:309–318. https://doi.org/10.1007/s10811-018-1523-1

    Article  Google Scholar 

  35. Haoujar I, Cacciola F, Abrini J, Mangraviti D, Giuffrida D, Oulad El Majdoub Y, Kounnoun A, Miceli N, Fernanda Taviano M, Mondello L (2019) The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules 24:4037. https://doi.org/10.3390/molecules24224037

    Article  Google Scholar 

  36. Morowvat MH, Goharian S, Ghasemi Y (2019) Investigation of antioxidant properties of three naturally isolated microalgae: identification and bioinformatics evaluation of the most efficient strain. Recent Pat Biotechnol 13:277–283. https://doi.org/10.2174/1872208313666190625122911

    Article  Google Scholar 

  37. Onofrejová L, Vašíčková J, Klejdus B, Stratil P, Mišurcová L, Kráčmar S, Kopecký J, Vacek J (2010) Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal 51:464–470. https://doi.org/10.1016/j.jpba.2009.03.027

    Article  Google Scholar 

  38. Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133. https://doi.org/10.3390/molecules20011118

    Article  Google Scholar 

  39. López A, Rico M, Rivero A, Suárez De Tangil M (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109. https://doi.org/10.1016/j.foodchem.2010.09.101

    Article  Google Scholar 

  40. Bhagwat S, Haytowitz DB, Holden JM (2014) USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture: Beltsville, MD, USA. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav_R03-1.pdf. Accessed 10 November 2020

  41. Basily HS, Nassar MM, El Diwani GI, SaA E-E (2018) Exploration of using the algal bioactive compounds for cosmeceuticals and pharmaceutical applications. Egypt Pharm J 17:109. https://doi.org/10.4103/epj.epj_6_18

    Article  Google Scholar 

  42. Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51:456–463. https://doi.org/10.1016/j.jpba.2009.03.014

    Article  Google Scholar 

  43. Santoyo S, Rodríguez-Meizoso I, Cifuentes A, Jaime L, García-Blairsy Reina G, Señorans FJ, Ibáñez E (2009) Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT - Food Sci Technol 42:1213–1218. https://doi.org/10.1016/j.lwt.2009.01.012

    Article  Google Scholar 

  44. Guedes AC, Barbosa CR, Amaro HM, Pereira CI, Xavier Malcata F (2011) Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int J Food Sci Technol 46:862–870. https://doi.org/10.1111/j.1365-2621.2011.02567.x

    Article  Google Scholar 

  45. Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52. https://doi.org/10.1007/s10126-008-9118-5

    Article  Google Scholar 

  46. Ohta S, Shiomi Y, Kawashima A, Aozasa O, Nakao T, Nagate T, Kitamura K, Miyata H (1995) Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J Appl Phycol 7:121–127. https://doi.org/10.1007/BF00693057

    Article  Google Scholar 

  47. Marrez DA, Naguib MM, Sultan YY, Higazy AM (2019) Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon 5:e01404. https://doi.org/10.1016/j.heliyon.2019.e01404

    Article  Google Scholar 

  48. Tuney İ, Cadirci BH, Ünal D, Sukatar A (2006) Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish J Biol 30:171–175

    Google Scholar 

  49. Abedin RM, Taha HM (2008) Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Glob J Biotechnol Biochem 3:22–31

    Google Scholar 

  50. Salem OMA, Hoballah EM, Ghazi SM, Hanna SN (2014) Antimicrobial activity of microalgal extracts with special emphasize on Nostoc sp. Life Sci J 11:752–758. https://doi.org/10.7537/marslsj111214.139

    Article  Google Scholar 

  51. Mudimu O, Rybalka N, Bauersachs T, Born J, Friedl T, Schulz R (2014) Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites 4:373–393. https://doi.org/10.3390/metabo4020373

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology (DBT), New Delhi, India, for the financial support (Grant No- DBT/IC-2/Indo-Brazil/2016-19/04).

Funding

This work was supported by the Department of Biotechnology (DBT), Government of India [Grant No- DBT/IC-2/Indo-Brazil/2016–19/04].

Author information

Authors and Affiliations

Authors

Contributions

CM: conceptualization, investigation, validation, data curation, and writing—original draft. PGS: investigation, data curation, and visualization. MCK: methodology, writing—review and editing, and project administration. DD: methodology, writing—review and editing, and project administration. DAGA: methodology, writing—review and editing, and project administration. VVG: methodology, resources, writing—review and editing, supervision, and project administration.

Corresponding author

Correspondence to Vaibhav V. Goud.

Ethics declarations

Statement of informed consent, human/animal rights

No informed consent or human and animal rights are applicable to this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 629 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Suryawanshi, P.G., Kalita, M.C. et al. Polarity-wise successive solvent extraction of Scenedesmus obliquus biomass and characterization of the crude extracts for broad-spectrum antibacterial activity. Biomass Conv. Bioref. 14, 2467–2483 (2024). https://doi.org/10.1007/s13399-022-02432-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02432-1

Keywords

Navigation