Improved Sustainability in Wine Industry Byproducts: A Scale-up and Economical Feasibility Study for High-Value Compounds Extraction Using Modified SC-CO2

ACS Omega. 2022 Sep 15;7(38):33845-33857. doi: 10.1021/acsomega.2c02631. eCollection 2022 Sep 27.

Abstract

The objective of the present work was to optimize the operating conditions (P, T cosolvent %) and to study the scale-up and the feasibility of the supercritical fluid extraction (SFE) process for polyphenols from grape pomace, the main solid byproduct of the wine industry. Pilot-scale equipment (1 L extraction vessel) was used to study the scale-up prediction for extraction vessels of 50, 100, 500, and 1000 L capacity. The adopted scale-up criteria consisted of maintaining and keeping constant the solvent mass-to-feed mass ratio and the bed geometry dimension. The results indicated an excellent predictive level obtained by Sovová's model and success of the adopted scale-up criteria. At industrial scale, yields were close to 2.3 gGAE/100 gDM, a value obtained using the pilot-scale equipment. High concentrations of high-added-value phenols such as cis-resveratrol glucoside, cis-coutaric acid, trans-p-coumaric acid, quercetin, and proanthocyanidins were found in the extract. An economic evaluation of the process indicated the feasibility of an industrial SFE plant with a capacity of 500 L for producing in 60 min an extract with an expected phenolics' concentration of approximately 133 gGAE/kg extract at an estimated 67€ /kgextract cost of manufacturing. Notably, all values are better than those currently reported in the literature.