Skip to main content
Log in

Phenolic compounds in novel foods: insights into white and pigmented quinoa

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Quinoa (Chenopodium quinoa Willd.) is included in the European catalogue of novel foods. Indigenous to the Andes in South America, a global expansion of its cultivation has occurred worldwide over the last decades. At physiological maturity, quinoa grains display several colours. However, after desaponification, seeds assume three main commercial colours: white, red, and black. This work aimed to investigate if differences occur in the phytochemical content and profile of pigmented quinoa ecotypes compared to white ones, with a focus on phenolic compounds. It emerged that a higher amount of data on phenolic compounds is available for white genotypes, and pigmented quinoa has been poorly studied. Some studies showed that coloured varieties are significantly richer in phenolic compounds than white ones. However, available data are not conclusive. Harmonization and optimization of sample preparation are urgent to obtain reliable data which enable to compare the contribution of different quinoa genotypes to phenolic dietary intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. European commission (2022) Novel food catalogue. https://food.ec.europa.eu/safety/novel-food/novel-food-catalogue_en. Accessed 19 Jan 2022

  2. European Commission (1997) Regulation (EC) No 258/97 of the European parliament and of the council of 27 January 1997 concerning novel foods and novel food ingredients. In: Off J L. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31997R0258&from=EN. Accessed 19 Jan 2022

  3. Alandia G, Rodriguez JP, Jacobsen SE et al (2020) Global expansion of quinoa and challenges for the Andean region. Glob Food Sec 26:100429. https://doi.org/10.1016/J.GFS.2020.100429

    Article  Google Scholar 

  4. Bazile D, Pulvento C, Verniau A et al (2016) Worldwide evaluations of quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci 7:11. https://doi.org/10.3389/fpls.2016.00850

    Article  Google Scholar 

  5. FAO & CIRAD (2015) State of the art report on quinoa around the world, Rome. https://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/. Accessed 21 Jan 2022

  6. Yang X, Zhu K, Guo H et al (2021) Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry. Food Chem 348:129086. https://doi.org/10.1016/j.foodchem.2021.129086

    Article  CAS  PubMed  Google Scholar 

  7. Espitia-Hernández P, Chávez González ML, Ascacio-Valdés JA et al (2022) Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci Nutr 62:2269–2280. https://doi.org/10.1080/10408398.2020.1852389

    Article  CAS  PubMed  Google Scholar 

  8. Poonia A, Pandey S (2021) Bioactive compounds, nutritional benefits and food applications of black rice: a review. Nutr Food Sci. https://doi.org/10.1108/NFS-07-2021-0208/FULL/XML

    Article  Google Scholar 

  9. Yamuangmorn S, Prom U thai S (2021) The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 10:833. https://doi.org/10.3390/ANTIOX10060833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melini V, Panfili G, Fratianni A, Acquistucci R (2019) Bioactive compounds in rice on Italian market: pigmented varieties as a source of carotenoids, total phenolic compounds and anthocyanins, before and after cooking. Food Chem 277:119–127. https://doi.org/10.1016/j.foodchem.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  11. Rocchetti G, Giuberti G, Busconi M et al (2020) Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: an in vitro study combining starch digestion and untargeted metabolomics. Food Chem 312:126077. https://doi.org/10.1016/j.foodchem.2019.126077

    Article  CAS  PubMed  Google Scholar 

  12. Suriano S, Balconi C, Valoti P, Redaelli R (2021) Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT-Food Sci Technol 144:111257. https://doi.org/10.1016/j.lwt.2021.111257

    Article  CAS  Google Scholar 

  13. Melini V, Melini F (2021) Functional components and anti-nutritional factors in gluten-free grains: a focus on quinoa seeds. Foods 10:351. https://doi.org/10.3390/foods10020351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang F, Ren Y, Du C et al (2021) Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd) flour. J Cereal Sci 102:3330. https://doi.org/10.1016/J.JCS.2021.103330

    Article  Google Scholar 

  15. Martinez KB, Mackert JD, McIntosh MK (2017) Polyphenols and intestinal health. In: Watson R (ed) Nutrition and functional foods for healthy aging, 1st edn. Elsevier Inc., New York

  16. Koch W (2019) Dietary polyphenols—important non-nutrients in the prevention of chronic noncommunicable diseases. Syst Rev Nutr. https://doi.org/10.3390/NU11051039

    Article  Google Scholar 

  17. Lin D, Xiao M, Zhao J et al (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. https://doi.org/10.3390/MOLECULES21101374

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vasantha Rupasinghe HP, Nair SVG, Robinson RA (2014) Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. In: Atta-ur-Rahman (ed) Studies in Natural Products Chemistry, Vol 42, Elsevier, Amsterdam

  19. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55. https://doi.org/10.1016/j.foodchem.2013.11.093

    Article  CAS  PubMed  Google Scholar 

  20. Melini V, Melini F (2021) Modelling and optimization of ultrasound-assisted extraction of phenolic compounds from black quinoa by response surface methodology. Molecules 26:3616. https://doi.org/10.3390/MOLECULES26123616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melini V, Melini F (2021) Compositional and nutritional analysis. In: Galanakis CM (ed) Innovative food analysis. Academic Press, pp 1–39

    Google Scholar 

  22. Diaz-Valencia YK, Alca JJ, Calori-Domingues MA et al (2018) Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nov Biotechnol Chim 17:74–85. https://doi.org/10.2478/nbec-2018-0008

    Article  CAS  Google Scholar 

  23. Liu M, Zhu K, Yao Y et al (2020) Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem 97:703–713. https://doi.org/10.1002/cche.10286

    Article  CAS  Google Scholar 

  24. Enciso-Roca EC, Aguilar-Felices EJ, Tinco-Jayo JA et al (2021) Biomolecules with antioxidant capacity from the seeds and sprouts of 20 varieties of Chenopodium quinoa Willd (Quinoa). Plants 10:2417. https://doi.org/10.3390/PLANTS10112417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Škrovánková S, Válková D, Mlček J (2020) Polyphenols and antioxidant activity in pseudocereals and their products. Potravin Slovak J Food Sci 14:365–370. https://doi.org/10.5219/1341

    Article  Google Scholar 

  26. Lakshmi S, Goudar G, Singh M et al (2021) Variability in resistant starch, vitamins, carotenoids, phytochemicals and in-vitro antioxidant properties among diverse pigmented grains. J Food Meas Charact. https://doi.org/10.1007/s11694-021-00864-3

    Article  Google Scholar 

  27. Navarro del Hierro J, Herrera T, García-Risco MR et al (2018) Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin. Food Res Int 109:440–447. https://doi.org/10.1016/j.foodres.2018.04.058

    Article  CAS  PubMed  Google Scholar 

  28. Paucar-Menacho LM, Martínez-Villaluenga C, Dueñas M et al (2018) Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. Int J Food Sci Technol 53:516–524. https://doi.org/10.1111/ijfs.13623

    Article  CAS  Google Scholar 

  29. Abderrahim F, Huanatico E, Repo-Carrasco-Valencia R et al (2012) Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). J Cereal Sci 56:410–417. https://doi.org/10.1016/j.jcs.2012.04.013

    Article  CAS  Google Scholar 

  30. Cañarejo-Antamba MA, Bañuelos-Taváres O, Reyes-Trejo B et al (2021) Comparison of nutritional and nutraceutical properties of Chenopodium quinoa cultivated in Mexico and Ecuador. Chil J Agric Res 81:507–517. https://doi.org/10.4067/S0718-58392021000400507

    Article  Google Scholar 

  31. Balakrishnan G, Schneider RG (2020) Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. J Cereal Sci 95:103070. https://doi.org/10.1016/j.jcs.2020.103070

    Article  CAS  Google Scholar 

  32. Carciochi RA, Galván D′ Alessandro L, Manrique GD (2016) Effect of roasting conditions on the antioxidant compounds of quinoa seeds. Int J Food Sci Technol 51:1018–1025. https://doi.org/10.1111/ijfs.13061

    Article  CAS  Google Scholar 

  33. Carciochi RA, Galván-D’Alessandro L, Vandendriessche P, Chollet S (2016) Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum Nutr 71:361–367. https://doi.org/10.1007/s11130-016-0567-0

    Article  CAS  PubMed  Google Scholar 

  34. Carciochi RA, Dimitrov K, Galván D´Alessandro L (2016) Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. J Food Sci Technol 53:3978–3985. https://doi.org/10.1007/s13197-016-2393-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han Y, Chi J, Zhang M et al (2019) Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT 114:108381. https://doi.org/10.1016/j.lwt.2019.108381

    Article  CAS  Google Scholar 

  36. Kaur I, Tanwar B, Reddy M, Chauhan A (2016) Vitamin C, total polyphenols and antioxidant activity in raw, domestically processed and industrially processed Indian Chenopodium quinoa seeds. J Appl Pharm Sci 6:139–145. https://doi.org/10.7324/JAPS.2016.60419

    Article  CAS  Google Scholar 

  37. Mhada M, Metougui ML, El Hazzam K et al (2020) Variations of saponins, minerals and total phenolic compounds due to processing and cooking of quinoa (Chenopodium quinoa Willd) seeds. Foods 9:660. https://doi.org/10.3390/foods9050660

    Article  CAS  PubMed Central  Google Scholar 

  38. Nickel J, Spanier LP, Botelho FT et al (2016) Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chem 209:139–143. https://doi.org/10.1016/J.FOODCHEM.2016.04.031

    Article  CAS  PubMed  Google Scholar 

  39. Sobota A, Świeca M, Gęsiński K et al (2020) Yellow-coated quinoa (Chenopodium quinoa Willd)—physicochemical, nutritional, and antioxidant properties. J Sci Food Agric 100:2035–2042. https://doi.org/10.1002/jsfa.10222

    Article  CAS  PubMed  Google Scholar 

  40. Tang Y, Li X, Zhang B et al (2015) Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd genotypes. Food Chem 166:380–388. https://doi.org/10.1016/j.foodchem.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  41. Vega-Gálvez A, Zura L, Lutz M et al (2018) Assessment of dietary fiber, isoflavones and phenolic compounds with antioxidant and antimicrobial properties of quinoa (Chenopodium quinoa Willd). Chil J Agric Anim Sci 34:1–11. https://doi.org/10.4067/s0719-38902018005000101

    Article  Google Scholar 

  42. Stikić RI, Milinčić DD, Kostić AŽ et al (2020) Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem 97:626–633. https://doi.org/10.1002/cche.10278

    Article  CAS  Google Scholar 

  43. Antognoni F, Potente G, Biondi S et al (2021) Free and conjugated phenolic profiles and antioxidant activity in quinoa seeds and their relationship with genotype and environment. Plants 10:1046. https://doi.org/10.3390/PLANTS10061046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ballard CR, Maróstica MR (2018) Health benefits of flavonoids. In: Rubi M and Campos S (eds), Bioactive compounds: health benefits and potential applications. Elsevier, Cambridge

  45. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1–15. https://doi.org/10.1017/JNS.2016.41

    Article  Google Scholar 

  46. Hur J, Nguyen TTH, Park N et al (2018) Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express 8:1–8. https://doi.org/10.1186/s13568-018-0675-3

    Article  CAS  Google Scholar 

  47. Lee MJ, Sim KH (2018) Nutritional value and the kaempferol and quercetin contents of quinoa (Chenopodium quinoa Willd.) from different regions. Korean J Food Sci Technol 50:680–687. https://doi.org/10.9721/KJFST.2018.50.6.680

    Article  Google Scholar 

  48. Drzewiecki J, Martinez-Ayala AL, Lozano-Grande MA et al (2018) In Vitro screening of bioactive compounds in some gluten-free plants. Appl Biochem Biotechnol 186:847–860. https://doi.org/10.1007/s12010-018-2772-9

    Article  CAS  PubMed  Google Scholar 

  49. Park JH, Lee YJ, Kim YH, Yoon KS (2017) Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev Nutr Food Sci 22:195–202. https://doi.org/10.3746/pnf.2017.22.3.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shraim AM, Ahmed TA, Rahman MM, Hijji YM (2021) Determination of total flavonoid content by aluminum chloride assay: a critical evaluation. LWT 150:111932. https://doi.org/10.1016/J.LWT.2021.111932

    Article  CAS  Google Scholar 

  51. Lorigooini Z, Jamshidi-kia F, Hosseini Z (2020) Analysis of aromatic acids (phenolic acids and hydroxycinnamic acids). Recent Adv Nat Prod Anal. https://doi.org/10.1016/B978-0-12-816455-6.00004-4

    Article  Google Scholar 

  52. Saldanha E, Rao S, Adnan M et al (2018) Polyphenols in the prevention of acute pancreatitis in preclinical systems of study: a revisit. Polyph Mech Action Hum Heal Dis. https://doi.org/10.1016/B978-0-12-813006-3.00001-5

    Article  Google Scholar 

  53. Menaa F, Menaa A, Tréton J (2014) Polyphenols against skin aging. Polyph Hum Heal Dis 1:819–830. https://doi.org/10.1016/B978-0-12-398456-2.00063-3

    Article  CAS  Google Scholar 

  54. Zanwar AA, Badole SL, Shende PS et al (2014) Role of gallic acid in cardiovascular disorders. Polyph Hum Heal Dis 2:1045–1047. https://doi.org/10.1016/B978-0-12-398456-2.00080-3

    Article  CAS  Google Scholar 

  55. Mardani Ghahfarokhi A, Farhoosh A (2020) Farhoosh R (2020) Antioxidant activity and mechanism of inhibitory action of gentisic and α-resorcylic acids. Sci Report 10:1–11. https://doi.org/10.1038/s41598-020-76620-2

    Article  CAS  Google Scholar 

  56. Rocchetti G, Lucini L, Giuberti G et al (2019) Transformation of polyphenols found in pigmented gluten-free flours during in vitro large intestinal fermentation. Food Chem 298:125068. https://doi.org/10.1016/j.foodchem.2019.125068

    Article  CAS  PubMed  Google Scholar 

  57. Badal Mccreath S, Delgoda R (2016) Pharmacognosy: fundamentals, applications and strategies. Elsevier, Amsterdam

    Google Scholar 

  58. Vinholes J, Silva BM, Silva LR (2015) Hydroxycinnamic acids (HCAs): structure, biological properties and health effects (pp 105–130). In: Berhardt LV (ed) Advances in medicine and biology. Nova Science Publishers Inc, New York, p 211

    Google Scholar 

  59. Ma JN, Ma CM (2015) Antifungal inhibitory activities of caffeic and quinic acid derivatives. Coffee Heal Dis Prev. https://doi.org/10.1016/B978-0-12-409517-5.00071-1

    Article  Google Scholar 

  60. Agunloye OM, Oboh G (2018) Caffeic acid and chlorogenic acid: evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. J Food Biochem 42:e12541. https://doi.org/10.1111/JFBC.12541

    Article  Google Scholar 

  61. Navarro del Hierro J, Reglero G, Martin D (2020) Chemical characterization and bioaccessibility of bioactive compounds from saponin-rich extracts and their acid-hydrolysates obtained from fenugreek and quinoa. Foods 9:1159. https://doi.org/10.3390/foods9091159

    Article  CAS  PubMed Central  Google Scholar 

  62. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J (2018) The effects of sinapic acid on the development of metabolic disorders induced by estrogen deficiency in rats. Oxid Med Cell Longev. https://doi.org/10.1155/2018/9274246

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carrasco-Sandoval J, Rebolledo P, Peterssen-Fonseca D et al (2020) A fast and selective method to determine phenolic compounds in quinoa (Chenopodium quinoa Will) seeds applying ultrasound-assisted extraction and high-performance liquid chromatography. Chem Pap 1:3. https://doi.org/10.1007/s11696-020-01313-z

    Article  CAS  Google Scholar 

  65. Lin TA, Ke BJ, Cheng CS et al (2019) Red quinoa bran extracts protects against carbon tetrachloride-induced liver injury and fibrosis in mice via activation of antioxidative enzyme systems and blocking TGF-β1 PATHWAY. Nutr 11:395. https://doi.org/10.3390/NU11020395

    Article  CAS  Google Scholar 

  66. Wang J, Fang X, Ge L et al (2018) Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0197563

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sampaio SL, Fernandes Â, Pereira C et al (2020) Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa: BRS Piabiru. Food Funct 11:2969–2977. https://doi.org/10.1039/d0fo00055h

    Article  CAS  PubMed  Google Scholar 

  68. David AVA, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84. https://doi.org/10.4103/0973-7847.194044

    Article  CAS  Google Scholar 

  69. Morand C, Manach C, Crespy V, Remesy C (2000) Respective bioavailability of quercetin aglycone and its glycosides in a rat model. BioFactors 12:169–174. https://doi.org/10.1002/BIOF.5520120127

    Article  CAS  PubMed  Google Scholar 

  70. Pereira E, Cadavez V, Barros L et al (2020) Chenopodium quinoa Willd (quinoa) grains: a good source of phenolic compounds. Food Res Int 137:109574. https://doi.org/10.1016/j.foodres.2020.109574

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Authors have equally contributed to the conceptualization, data collection and analysis, and writing and editing of the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Valentina Melini.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melini, F., Melini, V. Phenolic compounds in novel foods: insights into white and pigmented quinoa. Eur Food Res Technol 248, 2955–2968 (2022). https://doi.org/10.1007/s00217-022-04103-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04103-x

Keywords

Navigation