Skip to main content
Log in

A simple method for extracting phycocyanin from Arthrospira (Spirulina) platensis by autolysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Phycocyanin (PC) is a natural blue pigment that has great commercial value in food and pharmaceutical industry. Arthrospira (Spirulina) platensis is a photosynthetic spiral-shaped cyanobacterium containing a rich PC pigment. Autolysis is the enzymatic digestion of cells by the action of its own enzymes. To develop an effective and economical extraction process, an autolysis process was incorporated into the conventional freezing–thawing method. In the present study, 91% of maximal extraction yield of PC with 1.194 purity (A620/A280) was obtained via autolysis after 3 h of incubation at 37 °C without using an extraction salt solution or a successive freezing–thawing process. In addition to temperature, the initial concentration of bicarbonate in growth medium and the concentration of wet biomass are important parameters that influence the extraction yield of PC by autolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in its supplementary information files.

References

  1. Ghosh T, Paliwal C, Maurya R, Mishra S (2015) Microalgal rainbow colours for nutraceutical and pharmaceutical applications. Plant Biol Biotechnol 2015:77–791

    Google Scholar 

  2. Hsieh-Lo M, Castillo G, Ochoa-Becerra MA, Mojica L (2019) Phycocyanin and phycoerythrin: strategies to improve production yield and chemical stability. Algal Res 42:101600

    Article  Google Scholar 

  3. Sintra TE, Bagagem SS, Ghazizadeh Ahsaie F, Fernandes A, Martins M, Macário IPE, Pereira JL, Gonçalves FJM, Pazuki G, Coutinho JAP, Ventura SPM (2021) Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Sep Purific Technol 255:11758

    Article  Google Scholar 

  4. Celekli A, Topyurek A, Markou G, Bozkurt H (2016) A multivariate approach to evaluate biomass production, biochemical composition and stress compounds of Spirulina platensis cultivated in wastewater. Appl Biochem Biotechnol 180:728–739

    Article  CAS  Google Scholar 

  5. Chaiklahan R, Chirasuwan N, Srinorasing T, Attasat S, Nopharatana A, Bunnag B (2022) Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: light intensity and cell concentration. Bioresour Technol 343:126077

    Article  CAS  Google Scholar 

  6. Prabakaran G, Sampathkumar P, Kavisri M, Moovendhan M (2020) Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int J Biol Macromol 153:256–263

    Article  CAS  Google Scholar 

  7. Moraes CC, De Medeiros Burkert JF, Kalil SJ (2010) C-phycocyanin extraction process for large-scale use. J Food Biochem 34:133–148

    Article  Google Scholar 

  8. Patil G, Chethana S, Madhusudhan MC, Raghavarao KS (2008) Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresour Technol 99:7393–7396

    Article  CAS  Google Scholar 

  9. Yan S-G, Zhu L-P, Su H-N, Zhang X-Y, Chen X-L, Zhou B-C, Zhang Y-Z (2010) Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. J Appl Phycol 23:1–6

    Article  CAS  Google Scholar 

  10. Sarada R, Pillai MG, Ravishankar GA (2003) Phycocyanin from Spirulina sp. influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801

    Article  Google Scholar 

  11. Minkova KM, Tchernov AA, Tchorbadjieva MI, Fournadjieva ST, Antova RE, Busheva MC (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102:55–59

    Article  CAS  Google Scholar 

  12. Pez Jaeschke D, Rocha Teixeira I, Damasceno Ferreira Marczak L, Domeneghini Mercali G (2021) Phycocyanin from Spirulina: a review of extraction methods and stability. Food Res Int 143:110314

    Article  CAS  Google Scholar 

  13. Chia SR, Chew KW, Leong HY, Manickam S, Show PL, Nguyen THP (2020) Sonoprocessing-assisted solvent extraction for the recovery of pigment–protein complex from Spirulina platensis. Chem Eng J 398:125613

    Article  CAS  Google Scholar 

  14. Wang K, Zhang S, Wang R, Liu Y, Cao G, Duan X, Ho S-H (2022) Rational design of Spirulina residue-derived graphene oxide as an efficient metal-free catalyst for sulfathiazole removal. Sep Purific Technol 290:120862

    Article  CAS  Google Scholar 

  15. Lindsey JK, Vance BD, Keeter JS, Scholes VE (1971) Spheroplast formation and associated ultrastructural changes in a synchronous culture of Anacystis nidulans treated with lysozyme. J Phycol 7:65–71

    CAS  Google Scholar 

  16. Vance BD, Ward HB (1969) Preparation of metabolically active protoplasts of blue–green algae. J Phycol 5:1–3

    Article  CAS  Google Scholar 

  17. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  Google Scholar 

  18. Choi WY, Lee HY (2018) Effect of ultrasonic extraction on production and structural changes of C-phycocyanin from marine Spirulina maxima. Int J Mol Sci 19:220

    Article  Google Scholar 

  19. Choi WY, Lee HY (2018) Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Appl Sci 8:1662

    Article  Google Scholar 

  20. Tavakoli S, Hong H, Wang K, Yang Q, Gahruie HH, Zhuang S, Li Y, Liang Y, Tan Y, Luo Y (2021) Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. Algal Res 60:102493

    Article  Google Scholar 

  21. Akaberi S, Krust D, Muller G, Frey W, Gusbeth C (2020) Impact of incubation conditions on protein and C-phycocyanin recovery from Arthrospira platensis post-pulsed electric field treatment. Bioresour Technol 306:123099

    Article  CAS  Google Scholar 

  22. Ferreira-Santos P, Nunes R, De Biasio F, Spigno G, Gorgoglione D, Teixeira JA, Rocha CMR (2020) Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. Lwt 128:109491

    Article  CAS  Google Scholar 

  23. Käferböck A, Smetana S, de Vos R, Schwarz C, Toepfl S, Parniakov O (2020) Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Res 48:101914

    Article  Google Scholar 

  24. Carullo D, Donsì F, Ferrari G, Pataro G (2021) Extraction improvement of water-soluble compounds from Arthrospira platensis through the combination of high-shear homogenization and pulsed electric fields. Algal Res 57:102341

    Article  Google Scholar 

  25. Shkolnikov Lozober H, Okun Z, Shpigelman A (2021) The impact of high-pressure homogenization on thermal gelation of Arthrospira platensis (Spirulina) protein concentrate. Innov Food Sci Emerg Technol 74:102857

    Article  CAS  Google Scholar 

  26. Walter A, Carvalho JCd, Soccol VT, Faria ABBd, Ghiggi V, Soccol CR (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Braz Arch Biol Technol 54:675–682

    Article  CAS  Google Scholar 

  27. Chen H-B, Wu J-Y, Wang C-F, Fu C-C, Shieh C-J, Chen C-I, Wang C-Y, Liu Y-C (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53:52–56

    Article  Google Scholar 

  28. Manirafasha E, Murwanashyaka T, Ndikubwimana T, Yue Q, Zeng X, Lu Y, Jing K (2017) Ammonium chloride: a novel effective and inexpensive salt solution for phycocyanin extraction from Arthrospira (Spirulina) platensis. J Appl Phycol 29:1261–1270

    Article  CAS  Google Scholar 

  29. Shanthi G, Premalatha M, Anantharaman N (2021) Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. J Clean Prod 294:126106

    Article  Google Scholar 

  30. Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  Google Scholar 

  31. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  32. Fan X, Cui Y, Zhang R, Zhang X (2018) Purification and identification of anti-obesity peptides derived from Spirulina platensis. J Funct Foods 47:350–360

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang X (2017) Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J Sci Food Agric 97:918–922

    Article  CAS  Google Scholar 

  34. Martelli G, Folli C, Visai L, Daglia M, Ferrari D (2014) Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications. Process Biochem 49:154–159

    Article  CAS  Google Scholar 

  35. Jung J-Y, Kim S, Lee H, Kim K, Kim W, Park MS, Kwon J-H, Yang J-W (2014) Use of extracts from oyster shell and soil for cultivation of Spirulina maxima. Bioprocess Biosyst Eng 37:2395–2400

    Article  CAS  Google Scholar 

  36. Kenekar AA, Deodhar MA (2013) Effect of varying physicochemical parameters on the productivity and phycobiliprotein content of indigenous isolate Geitlerinema sulphureum. Biotechnology 12:146–154

    Article  CAS  Google Scholar 

  37. Narayan M, Manoj G, Vatchravelu K, Bhagyalakshmi N, Mahadevaswamy M (2005) Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int J Food Sci Nutr 56:521–528

    Article  CAS  Google Scholar 

  38. Chen Z, Li T, Yang B, Jin X, Wu H, Wu J, Lu Y, Xiang W (2021) Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield. J Oceanol Limnol 39:1131–1142

    Article  CAS  Google Scholar 

  39. Merz MU (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–101

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3055799) and by the Korea Evaluation Institute of Industrial Technology (KEIT) Grant funded by the Korea Government (MOTIE) (No. RS-2022-00155902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joo-Young Jung or Jong-Hee Kwon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SB., Kang, MS., Jung, JY. et al. A simple method for extracting phycocyanin from Arthrospira (Spirulina) platensis by autolysis. Bioprocess Biosyst Eng 45, 1731–1738 (2022). https://doi.org/10.1007/s00449-022-02781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02781-1

Keywords

Navigation